Draft Traffic Impact Analysis

Folsom Heights

Folsom, California

Prepared For
Ascent Environmental, Inc. \&
City of Folsom
Community Development Department

December 30, 2016

TABLE OF CONTENTS

Executive Summary... i
Introduction .. 1
Existing Conditions ... 9
Existing Plus Project Conditions ... 14
Cumulative Conditions Analysis ... 22
Consistency Assessment ... 32

Appendix A
Traffic Count Summary Sheets
Appendix B
Existing Conditions - Level of Service Calculation Worksheets
Appendix C
Trip Generation Comparison - Folsom Heights Commercial
Appendix D
Internal Trip Estimation Spreadsheets
Appendix E
Existing Plus Project - Level of Service Calculation Worksheets
Appendix F
Cumulative No Project - Level of Service Calculation Worksheets
Appendix G
Cumulative Plus Project - Level of Service Calculation Worksheets

LIST OF TABLES

Table 1 - Folsom Heights Land Use Summary .. 3
Table 2 - Level of Service Definitions - Signalized Intersections .. 6
Table 3 - Level of Service Definitions - Unsignalized Intersections ... 7
Table 4 - Level of Service Definitions - Two-Lane and Multilane Highways... 8
Table 5 - Level of Service Summary - Existing Conditions ... 13
Table 6 - Unadjusted Trip Generation Estimate... 15
Table 7 - Adjusted Trip Generation Estimate .. 16
Table 8 - Level of Service Summary - Existing Plus Project Conditions .. 21
Table 9 - Level of Service Summary - Cumulative No Project Conditions ... 25
Table 10 - Level of Service Summary - Cumulative Plus Project Conditions 29

LIST OF FiGURES

Figure 1 - Project Location .. 2
Figure 2 - Project Site Plan ... 4
Figure 3 - Existing Transportation System.. 10
Figure 4 - Peak Hour Traffic Volumes - Existing Conditions .. 11
Figure 5 - Project Trip Distribution ... 18
Figure 6 - Peak Hour Traffic Volumes - Existing + Project Conditions... 19
Figure 7 - Peak Hour Traffic Volumes - Cumulative No Project Conditions... 24
Figure 8 - Project Trip Distribution - Cumulative Conditions... 27
Figure 9 - Peak Hour Traffic Volumes - Cumulative + Project Conditions ... 28
Figure 10 - Future Transportation System ... 31

EXECUTIVE SUMMARY

This study addresses the traffic impacts associated with the proposed Folsom Heights project, which is to be located at the eastern end of the Folsom Plan Area, immediately south of U.S. Highway 50 and adjacent to the Sacramento/El Dorado County line. The proposed project would consist of 530 singlefamily residential units and approximately 128,500 square feet of general commercial space on a 189.7-acre site.

The study evaluates weekday AM and PM peak hour traffic operations in the vicinity of the project site under the following scenarios:

- Existing Conditions,
- Existing Plus Project Conditions,
- Cumulative No Project Conditions, and
- Cumulative Plus Project Conditions.

At the request of the El Dorado Hills Community Services District and the El Dorado County Community Development Agency, the impacts of the project were evaluated at two intersections and two road segments in the immediate vicinity of the project site. Because the study locations are within El Dorado County, the analysis employed methodologies and significance criteria established by that jurisdiction.

Existing Conditions

- AM Peak Hour: Both study intersections conform to El Dorado County's General Plan Circulation policy (i.e., LOS E or better), as they operate at LOS A or B. The unsignalized intersection of Stonebriar Drive/Prima Drive has insufficient traffic to meet the minimum requirements for installation of a traffic signal. Both study segments of White Rock Road operate at an acceptable LOS C in both directions in the AM peak hour.
- PM Peak Hour: Both study intersections again operate at an acceptable level of service. Stonebriar Drive/Prima Drive fails to meet the minimum requirements of the "Peak Hour" signal warrant. Both segments of White Rock Road again operate at an acceptable LOS C in both directions.

Existing Plus Project Conditions

- The proposed project is expected to generate a net total of 692 AM peak-hour trips, with 282 inbound and 410 outbound. The PM peak hour trip generation is estimated to be 1,157 trips, with 642 inbound and 515 outbound. Almost 16,000 gross/unadjusted daily trips are projected, including internal trips and pass-by/diverted trips.
- The analysis assumes that Easton Valley Parkway will be available to provide vehicular access at intersections along the southerly extension of Empire Ranch Road.
- AM Peak Hour: No change in level of service is projected, and both study intersections will continue to operate at acceptable levels of service (i.e., LOS A or B). The all-way-STOP controlled study intersection of Stonebriar Drive/Prima Drive will fail to meet the minimum requirements of the "Peak Hour" signal warrant. No change in level of service is projected on the study road segments, both of which will operate at an acceptable LOS C in both directions.
- PM Peak Hour: Both study locations will continue to operate at LOS A or B, which is acceptable under El Dorado County policy. Traffic volumes at the intersection of Stonebriar Drive/Prima Drive will again be insufficient to meet the "Peak Hour" signal warrant requirements. No change in level of service is expected on three of the four study segments of White Rock Road; it will operate at an acceptable LOS C. The westbound segment between Stonebriar Drive and Manchester Drive is projected to decline from LOS C to LOS D, but will continue to operate at an acceptable level of service.
- The project-related impacts at all of the study intersections and road segments are less than significant, and no mitigation measures are needed to resolve off-site traffic impacts.

Cumulative No Project Conditions

- The cumulative conditions analysis reflects the level of development anticipated in the City of Folsom and throughout the Sacramento region through the year 2035. The traffic volume projections employed in this analysis are based on information presented in the environmental documentation for the proposed Russell Ranch project and the Folsom Plan Area Specific Plan (FPASP) annexation project.
- The following study area transportation system improvements are reflected in the future year traffic forecasts used in this analysis:
- Construction of a new interchange at U.S. Highway 50/Oak Avenue Parkway,
- Construction of the U.S. Highway 50/Empire Ranch Road interchange, and
- Widening of White Rock Road to four lanes plus turn lanes from the Sacramento/El Dorado County line to Manchester Drive.
- In addition, the traffic projections reflect completion of all roadway system improvements within the Folsom Plan Area Specific Plan, as well as the regional transportation system improvements identified in the SACOG Metropolitan Transportation Plan/Sustainable Communities Strategy.
- AM Peak Hour: Both study intersections are expected to operate within the County's LOS E standard in the AM peak hour. The projected traffic volumes at Stonebriar Drive/Prima Drive will be insufficient to meet the minimum requirements of the "Peak Hour" signal warrant. With the planned widening of White Rock Road, LOS B is projected for both eastbound study segments, while the westbound segments are expected to operate at LOS A.
- PM Peak Hour: Both intersections will operate at acceptable levels of service (LOS A or B). Again, the traffic volumes at Stonebriar Drive/Prima Drive will not be sufficient to meet the minimum requirements of the "Peak Hour" signal warrant. Both segments of White Rock Road are projected to operate at an acceptable LOS B in both directions under this scenario.

Cumulative + Project Conditions

- AM Peak Hour: Both study intersections are projected to operate acceptably under the El Dorado County LOS E standard. Further, no change in level of service is projected upon addition of the project-generated traffic. The Stonebriar Drive/Prima Drive intersection will continue to have insufficient traffic to meet the "Peak Hour" signal warrant requirements. All of the study segments will continue to operate at acceptable levels of service - LOS B in all cases.
- PM Peak Hour: Both locations will continue to operate at LOS A or B. The "Peak Hour" signal warrant requirements will not be met at Stonebriar Drive/Prima Drive, so continuation of all-way-

STOP control is appropriate. Both White Rock Road segments are projected to operate at LOS B in both directions, the same as under Cumulative No Project conditions.

- The project-related impact is less than significant, and no mitigation measures are recommended.

Consistency Assessment

- In March 2016, MRO Engineers, Inc., conducted an analysis, which determined that the traffic impacts of the proposed Folsom Heights project (as recently modified) had been adequately addressed in the environmental documentation prepared with respect to the entire Folsom Plan Area annexation project.
- The recently-submitted Vesting Tentative Subdivision Map was reviewed to ensure that no other significant impacts might occur in connection with implementation of the proposed Folsom Heights project, based on the environmental issue areas addressed in the Environmental Checklist and Addendum - Folsom Plan Area Specific Plan Amendment for the Folsom Heights Area (Ascent Environmental, April 2016).
- This consistency assessment determined that the traffic impacts associated with the current Folsom Heights proposal are consistent with the findings documented in previous environmental analyses.

INTRODUCTION

This study addresses the traffic impacts associated with the proposed Folsom Heights project, which is to be located at the eastern end of the Folsom Plan Area, immediately south of U.S. Highway 50 and adjacent to the Sacramento/El Dorado County line. On March 10, 2016, MRO Engineers, Inc., completed an analysis of the proposed project, which determined that the traffic impacts of the proposed Folsom Heights project (as recently modified) had been adequately addressed in the environmental documentation prepared with respect to the entire Folsom Plan Area.

The project sponsor has recently submitted to the City of Folsom a Vesting Tentative Subdivision Map illustrating the layout of the proposed project, including the proposed street system and the arrangement of the residential lots. According to that map, the proposed land use has not changed since completion of the March 2016 letter. This report describes the results of an analysis that consists of the following components:

- A traffic impact analysis for the following two intersections identified by the El Dorado Hills Community Services District (CSD):
- White Rock Road/Stonebriar Drive/Four Seasons Drive, and
- Stonebriar Drive/Prima Drive.
- A traffic impact analysis for the following two road segments identified by the El Dorado County Community Development Agency staff:
- White Rock Road between Stonebriar Drive and the Sacramento/El Dorado County line, and
- White Rock Road between Stonebriar Drive and Manchester Drive.
- A consistency assessment to ensure that the Tentative Map is consistent with previous versions of the project and no significant impacts will result from the layout of the proposed project.

As directed by City of Folsom staff, this study analyzed detailed traffic operations under the following four scenarios:

- Existing Conditions,
- Existing Plus Project Conditions,
- Cumulative No Project Conditions, and
- Cumulative Plus Project Conditions.

This report presents the analysis procedures as well as the findings and recommendations resulting from the evaluation.

Project Description

As illustrated on Figure 1, the proposed project is to be located at the eastern end of the Folsom Plan Area, immediately south of U.S. Highway 50 and adjacent to the Sacramento/El Dorado County line. It extends from U.S. Highway 50 at the north to White Rock Road at the south.

Table 1 summarizes the proposed land use plan for the Folsom Heights project. According to information supplied by the project applicant, the proposed project would consist of a total of 530 residential dwelling units (DU) and about 128,500 square feet (SF) of retail space.

Table 1Folsom Heights Land Use Summary			
Land Use		Proposed Plan	
		Acres	DU^{1} or SF^{2}
	Single Family	31.9	117 DU
	Single-Family High Density	60.8	285 DU
	Multi-Family Low Density ${ }^{3}$	14.9	128 DU
Residential Subtotal		107.6	530 DU
General Commercial		11.8	128,500 SF^{4}
Open Space		52.4	--
Roads/Highways		17.9	--
TOTAL		189.7	--
Notes: Dwelling units. Square feet. May be attached or detached. Assuming floor area ratio (FAR) of 0.25 (i.e., building square footage is 25 percent of total land area).			

Vehicular access to and from the proposed project would be primarily provided via three access roads along the future southerly extension of Empire Ranch Road, at the western edge of Folsom Heights. In addition, near the southeasterly corner of the proposed project, access would be possible via the extension of existing Prima Drive from its current terminus at Stonebriar Drive in El Dorado Hills.

Figure 2 presents the proposed project site plan.

Study Area

Based on a request from the El Dorado Hills Community Services District (CSD) and input from City of Folsom staff, the off-site impacts of the proposed project were evaluated at the following intersections:

- White Rock Road/Stonebriar Drive/Four Seasons Drive, and
- Stonebriar Drive/Prima Drive.

In addition to the intersections listed above, analysis of the following two road segments was requested by the El Dorado County Community Development Agency staff:

- White Rock Road between Stonebriar Drive and the Sacramento/El Dorado County line, and
- White Rock Road between Stonebriar Drive and Manchester Drive.

No other intersections or road segments were addressed in this analysis. As described earlier, on March 10, 2016, MRO Engineers completed an analysis confirming that the traffic impacts of the Folsom Heights project, as currently proposed, were adequately addressed in the environmental documentation prepared with respect to the entire Folsom Plan Area.

Analysis Methodology

In accordance with the analysis procedures generally accepted in the City of Folsom and El Dorado County, the following techniques were employed in conducting this study.

Intersection Operations

Intersection operations are typically described in terms of level of service (LOS), which is reported on a scale from LOS A (representing free-flow conditions) to LOS F (which represents substantial congestion and delay). The level of service designations are based on a quantitative calculation of weighted average vehicular delay at the intersection. The specific approach to estimating delay is based on procedures documented in the Highway Capacity Manual 2010 (Transportation Research Board, Fifth Edition, December 2010).

Signalized Intersection Analysis

The signalized study intersection of White Rock Road/Stonebriar Drive/Four Seasons Drive was analyzed using the "operational analysis" methodology presented in Chapter 18 of the Highway Capacity Manual 2010 (HCM 2010). This methodology determines signalized intersection level of service by comparing the "average control delay per vehicle" to the thresholds shown in Table 2. Control delay represents the delay directly associated with the traffic signal. For this analysis, the level of service calculations were performed using the Synchro 8 software package, which implements the intersection analysis procedures documented in the HCM 2010.

Tevel of Service Definitions Signalized Intersections			
Level of Service	Description	Average Control Delay (Seconds/Vehicle)	
A	Very low delay. Most vehicles do not stop	≤ 10.0	
B	Slight delay. Generally good signal progression.	$10.1-20.0$	
C	Increased number of stopped vehicles. Fair signal progression.	$20.1-35.0$	
D	Noticeable congestion. Large proportion of vehicles stopped.	$35.1-55.0$	
E	Operating conditions at or near capacity. Frequent cycle failure.	$55.1-80.0$	
F	Oversaturation. Forced or breakdown flow. Extensive queuing.	>80.0	
Reference:Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010.			

Unsignalized Intersection Analysis

The analysis of the unsignalized, all-way-STOP study intersection of Stonebriar Drive/Prima Drive was conducted using the appropriate method documented in Chapter 19 of the HCM 2010. This method calculates the weighted average control delay for the intersection as a whole and determines level of service based on the criteria set forth in Table 3. For unsignalized intersections, control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The unsignalized study intersection was also analyzed using the Synchro 8 software package, which performs level of service calculations in accordance with the HCM 2010 procedures.

The analysis of the unsignalized study intersection also considered whether it would meet the minimum requirements for installation of a traffic signal. The need for installation of a traffic signal at a given location is judged relative to a defined set of traffic signal "warrants." The warrants applied in the State of California were established by Caltrans, based on essentially similar requirements documented in the Manual on Uniform Traffic Control Devices (MUTCD) published by the Federal Highway Administration (FHWA). The current signal warrants are documented in "Part 4 - Highway Traffic Signals" of the California Manual on Uniform Traffic Control Devices, dated November 7, 2014. Nine such warrants have been defined, although not all warrants are relevant to each case. This analysis was conducted using Warrant 3, the "Peak Hour" signal warrant.

Table 3 Level of Service Definitions Unsignalized Intersections		
Level of Service	Description	Average Control Delay (Seconds/Vehicle)
A	Little or no conflicting traffic for minor movements.	≤ 10.0
B	Drivers on minor movements begin to notice absence of available gaps.	$10.1-15.0$
C	Drivers on minor movements begin to experience delays waiting for adequate gaps.	$15.1-25.0$
D	Queuing occurs on minor movements due to a reduction in available gaps.	$25.1-35.0$
E	Extensive minor movement queuing due to insufficient gaps.	$35.1-50.0$
F	Insufficient gaps of adequate size to allow minor movement traffic demand to be accommodated.	>50.0
Reference:	Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition,	
December 2010.		

Road Segment Operations

Traffic operations on the two key roadway segments in the vicinity of the proposed project were also evaluated using methodologies presented in the Highway Capacity Manual 2010. In the short term, White Rock Road is a two-lane highway with a painted median. With regard to the analysis of cumulative conditions, El Dorado County has recently adopted a Capital Improvement Program (CIP), which includes a project to widen White Rock Road to four lanes plus turn lanes from the Sacramento/El Dorado County line to Manchester Drive.

Two-Lane Highway Analysis

The analysis of two-lane highways is addressed in Chapter 15 of HCM 2010. Because these roadways serve many functions, the methodology includes designation of the study segment as being one of three distinct classes, labeled Class I, II, and III. The study segments of White Rock Road have been categorized as being Class III highways, as they serve a "moderately developed area" where "local traffic often mixes with through traffic" and the "density of unsignalized roadside access points is noticeably higher than in a purely rural area." [Ref.: HCM 2010, p. 15-3.] For such highways, level of service is defined based on "percent of free-flow speed" (PFFS).

Multilane Highways

Multilane highways are analyzed using the procedures presented in Chapter 14 of HCM 2010. Level of service is defined based on density, which is a measure of the proximity of vehicles to each other. While specific density values are defined for LOS A - D, the density values for LOS E and F vary depending upon free-flow speed. Free-flow speed can be either measured or estimated. If estimated,
the HCM 2010 suggests that it be ". . . the posted or statutory speed limit plus $5 \mathrm{mi} / \mathrm{h}$ for speed limits $50 \mathrm{mi} / \mathrm{h}$ and higher and as the speed limit plus $7 \mathrm{mi} / \mathrm{h}$ for speed limits less than $50 \mathrm{mi} / \mathrm{h}$." Given the speed limit of 55 MPH on White Rock Road, the estimated free-flow speed is 60 MPH .

Table 4 summarizes the level of service criteria for two-lane highways and multilane highways.

Table 4 Level of Service Definitions ${ }^{1}$ Two-Lane and Multilane Highways		
Level of Service	Two-Lane Highways Percent of Free-Flow Speed	$\begin{aligned} & \text { Multilane Highways } \\ & \text { Density }(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})^{2} \end{aligned}$
A	> 91.7\%	≤ 11.0
B	83.4-91.7\%	11.1-18.0
C	75.1-83.3\%	18.1-26.0
D	66.8-75.0\%	26.1-35.0
E	≤ 66.7	$35.1-40.0^{3}$
F	Demand Exceeds Capacity	$>40.0^{3}$
Notes: ${ }^{1}$ Reference: Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010. Passenger cars per mile per lane. Assuming a free-flow speed of 60 MPH .		

Evaluation Criteria

Because all of the study locations are in El Dorado County, this analysis addresses the traffic impacts of the proposed Folsom Heights project under the significance criteria of that jurisdiction.

El Dorado County

El Dorado County General Plan Circulation Policy TC-Xd provides level of service standards for County roads. According to that policy, the standard for White Rock Road is LOS E. If the proposed project causes the level of service to degrade from acceptable (i.e., LOS A - E) to unacceptable (i.e., LOS F), then the project's impact is considered significant.

For roads that fall short of meeting the County's LOS standard under "no project" conditions, General Plan Circulation Policy TC-Xe states that a significant impact occurs in the event of:
A. A two percent increase in traffic during the AM peak hour, the PM peak hour, or daily, or
B. The addition of 100 or more daily trips, or
C. The addition of 10 or more trips during the AM peak hour or the PM peak hour.

EXISTING CONDITIONS

This section describes the roadway network serving the proposed project, as well as existing traffic operations at the study intersections and road segments.

Key Roadways

The existing transportation system in the vicinity of the project site is illustrated on Figure 3. Shown there are the traffic lanes on the adjacent roadways, as well as existing facilities for pedestrians and bicyclists. Brief descriptions of the key roadways serving the project site are provided below.

White Rock Road is an east-west, two-lane arterial roadway that generally runs parallel to and south of U.S. Highway 50. In the vicinity of the proposed project, it transitions to a southwest-to-northeast orientation as it passes into El Dorado County to the east and, at Manchester Drive, it widens to a fourlane facility. At Stonebriar Drive, it has dedicated left-turn lanes in each direction, as well as a separate right-turn lane for southwesterly traffic. In the immediate vicinity of the project site, it has bike lanes in both directions, a sidewalk on the southeastern side only, and a 55 MPH speed limit.

Stonebriar Drive is a two-lane residential street that extends to the north from White Rock Road. Although generally not median-divided, a raised median is present between Prima Drive and White Rock Road. It has sidewalks on both sides and, although it does not have formal bike lanes, a wide parking/shoulder lane serves the needs of bicyclists. Stonebriar Drive has a 25 MPH speed limit.

Prima Drive is a relatively short, two-lane residential street within the Stonebriar neighborhood. It currently terminates at Stonebriar Drive, although it will be extended to the west to provide access to the proposed Folsom Heights project. It has a 25 MPH speed limit.

Existing Traffic Volumes

On Thursday, December 1, 2016, AM and PM peak-period turning movement counts were conducted by an independent data collection firm at the following study intersections:

- White Rock Road/Stonebriar Drive/Four Seasons Drive, and
- Stonebriar Drive/Prima Drive.

Those counts were specifically scheduled on a typical school day, to ensure a conservative analysis of traffic operations.

Twenty-four hour vehicle classification counts were performed on the following road segments on the same day:

- White Rock Road between Stonebriar Drive and the Sacramento/El Dorado County line, and
- White Rock Road between Stonebriar Drive and Manchester Drive.

The AM and PM peak-hour traffic volumes and existing intersection lane configurations are shown on Figure 4. Appendix A contains the traffic count data collection sheets.

LEGEND
SIDEWALK / CROSSWALK
BIKE LANE

RAISED MEDIAN TRAFFIC SIGNAL
STOP STOP SIGN

The AM peak hours at the study intersections occurred during different hourly periods: 7:15-8:15 AM at White Rock Road/Stonebriar Drive/Four Seasons Drive and 7:00-8:00 AM at Stonebriar Drive/Prima Drive. The PM peak hour occurred between 4:30 and 5:30 PM at White Rock Road/Stonebriar Drive/Four Seasons Drive and from 5:00 until 6:00 PM at Stonebriar Drive/Prima Drive.

Existing Intersection Level of Service

Table 5 summarizes the existing AM and PM peak hour levels of service at the study intersections. Appendix B contains the technical calculation sheets.

AM Peak Hour

Both study intersections conform to the County's General Plan Circulation policy (i.e., LOS E or better). White Rock Road/Stonebriar Drive/Four Seasons Drive is at LOS B, while Stonebriar Drive/Prima Drive is currently operating at LOS A. The unsignalized intersection of Stonebriar Drive/Prima Drive has insufficient traffic to meet the minimum requirements for installation of a traffic signal.

PM Peak Hour

In the PM peak hour, both study intersections again operate at acceptable levels of service. In fact, the level of service results are identical to the AM peak hour findings, with one location at LOS A and one at LOS B. Stonebriar Drive/Prima Drive again fails to meet the minimum requirements of the "Peak Hour" signal warrant.

Existing Roadway Segment Level of Service

AM Peak Hour

Both segments of White Rock Road operate at an acceptable LOS C in both directions in the AM peak hour.

PM Peak Hour

In the PM peak hour, both segments of White Rock Road again operate at an acceptable LOS C in both directions.

Table 5 Level of Service Summary ${ }^{1}$ Existing Conditions							
Intersection	Traffic Control	AM Peak Hour			PM Peak Hour		
		Delay ${ }^{2}$	LOS^{3}	Meet Signal Warrant? 4	Delay	LOS	
White Rock Rd./Stonebriar Dr./Four Seasons Dr.	Signal	11.7	B	--	12.7	B	--
Stonebriar Dr./Prima Dr.	AllWay STOP	7.7	A	No	7.6	A	No
White Rock Road Segment		AM Peak Hour			PM Peak Hour		
		PFFS ${ }^{5}$		LOS	PFFS		LOS
Sacramento/El Dorado Co. Line to Stonebriar Dr.	$E B^{6}$	82.2\%		C	80.6\%		C
	WB^{7}	79.8\%		C	80.8\%		C
Stonebriar Drive to Manchester Drive	EB	80.8\%		C	79.9\%		C
	WB	78.6\%		C	78.6\%		C
Notes: Reference: Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010. Average control delay (seconds per vehicle). Level of service. "Peak Hour" signal warrant documented in "Part 4 - Highway Traffic Signals" of the California Manual on Uniform Traffic Control Devices, November 7, 2014. Percent of free-flow speed. Eastbound. Westbound.							

EXISTING PLUS PROJECT CONDITIONS

This section documents the impacts of the proposed project on traffic operations under Existing Plus Project conditions. To evaluate off-site impacts, the volume of traffic generated by the proposed project was estimated and that traffic was assigned to the nearby street system. The levels of service at the study intersections were then analyzed for the weekday AM and PM peak hours. Based on information provided by the project applicant as well as infrastructure plans for the recently-approved Enclave at Folsom Ranch project, this scenario assumes that key portions of Easton Valley Parkway will be constructed in the short-term time frame, and will be available to provide access to the proposed project's westerly access points.

Project Description

As described above, the proposed Folsom Heights project would be located at the eastern end of the Folsom Plan Area, immediately south of U.S. Highway 50 and adjacent to the Sacramento/El Dorado County line. The proposed project would consist of 530 single-family residential units and approximately $128,500 \mathrm{SF}$ of commercial space on 11.8 acres, as well as a significant amount of open space.

Vehicular access to and from the proposed project would be primarily provided via three access roads along the future southerly extension of Empire Ranch Road, at the western edge of Folsom Heights. In addition, near the southeasterly corner of the proposed project, access would be possible via the extension of existing Prima Drive from its current terminus at Stonebriar Drive in El Dorado Hills.

Trip Generation

The AM and PM peak-hour trip generation estimates for the proposed project were developed using information presented in the Trip Generation Manual (Institute of Transportation Engineers, Ninth Edition, 2012).

With regard to the commercial component of the project, the Development Permit Application addressed in the March 10, 2016 analysis indicated that the commercial site would be, ". . . sized and shaped to meet the needs of a grocery-anchored neighborhood center." Consequently, the trip generation estimate is based on the assumption that the retail center will consist of a supermarket combined with various other uses typical in such a center (e.g., retail stores, restaurants, and services such as banks, nail salons, real estate offices, etc.).

The assumed size of the supermarket was based on information presented in the ITE Trip Generation Manual and other sources. The ITE document indicates that the average sizes of the supermarkets surveyed in developing the trip rates presented there range from 37,000 SF (for the AM peak-hour rates) to $56,000 \mathrm{SF}$ (for the PM peak-hour rates). In addition, the Food Marketing Institute (FMI) publishes various facts about supermarkets, including the median store size. For 2014, the median supermarket size was $46,000 \mathrm{SF}$. According to FMI, the median size has been $46,000-47,000 \mathrm{SF}$ since 2008. Based on this information, this analysis has assumed that the Folsom Heights supermarket will be $50,000 \mathrm{SF}$, combined with $78,500 \mathrm{SF}$ of general retail/commercial space.

To ensure that this approach represents a conservative assessment of the modified project's trip generation, Appendix C contains a table summarizing a comparison of the trip generation associated with the plan described above (i.e., a supermarket combined with general retail/commercial) to a land use plan that does not include a supermarket. This analysis revealed that the supermarket-oriented commercial center would generate substantially more trips than a similarly-sized center without a supermarket, in all of the key analysis periods (i.e., daily, AM peak hour, and PM peak hour).

Table 6 summarizes the gross, unadjusted trip generation estimate for the proposed Folsom Heights land use plan, including both residential and commercial components. The proposed project will generate almost 16,000 trips per day. The AM peak-hour trip generation will be just over 700 trips (287 inbound and 415 outbound), while the PM peak-hour total will be slightly more than 1,500 (820 inbound and 693 outbound).

Table 6 Unadjusted Trip Generation Estimate ${ }^{1}$								
Land Use	Size	Daily Trips	AM Peak Hour Trips			PM Peak Hour Trips		
			In	Out	Total	In	Out	Total
Single-Family Residential ${ }^{2}$	530 DU	5,050	99	299	398	334	196	530
Supermarket ${ }^{3}$	50,000 SF	5,115	105	65	170	242	232	474
Retail ${ }^{4}$	78,500 SF	5,800	83	51	134	244	265	509
Commercial Subtotal		10,915	188	116	304	486	497	983
	TOTAL	15,965	287	415	702	820	693	1,513
 1 Notes: 1 Reference 2 2012. 2 ITE Land 3 ITE Land 4 ITE Land	ate of Transp ode 210 - Sin ode 850 - Su ode 820 - Sh	ation En e-Family rmarket. ping Ce	eers, tach	Gen	tion		Ed	

Internal Trips

The combination of residential and commercial land uses within the proposed project creates the potential for a certain amount of internal travel. Internal trips are those that occur entirely within the site (either as vehicular trips or pedestrian/bicycle trips), and result in no additional traffic on the public streets serving the project site. In this case, residents of the project might also be patrons at the proposed retail center. Those residents would be able to travel to and from the retail center without leaving the proposed project. Thus, they would have no adverse impact on the nearby public streets.

Guidance with respect to the magnitude of such internal travel is provided in the National Cooperative Highway Research Program (NCHRP) Report 684, Enhancing Internal Trip Capture Estimation for

Mixed-Use Developments (Transportation Research Board, 2011), which presents a detailed procedure for applying internal trip adjustments. That procedure incorporates extensive data with respect to interaction among various land uses within a mixed-use project. Based on the research documented in NCHRP 684, a spreadsheet was developed, which was employed in this analysis to estimate the magnitude of internal travel. The AM and PM peak hour spreadsheets are presented in Appendix D.

Pass-By and Diverted Trips

Although an additional portion of the retail trips associated with the proposed project might be "passby" or "diverted" trips (i.e., trips that are already on the adjacent or nearby roadways, with the trip to the retail center being an intermediate stop as part of another trip), no adjustment has been applied to account for this activity. This is intended to provide a conservative assessment of project-related traffic impacts.

Net Trip Generation

Based on application of the adjustments described above for internal trips, the net trip generation of the proposed Folsom Heights project for the AM and PM peak hours is as follows:

- Weekday AM peak hour: 692 trips (282 inbound and 410 outbound), and
- Weekday PM peak hour: 1,157 trips (642 inbound and 515 outbound).

Table 7 summarizes the derivation of these net trip generation estimates. Note that no adjustments are shown for daily conditions, as NCHRP Report 684 does not address that time period.

Trip Distribution

The geographic distribution of the project-generated residential traffic was largely based on existing traffic patterns in the vicinity of the proposed project. According to the newly-performed traffic counts at White Rock Road/Stonebriar Drive/Four Seasons Drive, most of the project traffic (i.e., 65 percent) is expected to approach from the east along White Rock Road. The remaining 35 percent will approach via either eastbound White Rock Road (7 percent) or Easton Valley Parkway (28 percent), with those proportions dictated by the distribution of residential units within the project. None of the residential traffic is assumed to come from the existing Stonebriar or Four Seasons neighborhoods.

The distribution of the project's retail traffic is based on consideration of the locations of existing competing retail facilities (e.g., El Dorado Hills Town Center and the existing Nugget Market) as well as access considerations. For example, it is considered unlikely that a large number of retail customers would be willing to wind through the residential portions of the project to reach the retail center. This limits the amount of retail traffic that will approach from the east on White Rock Road and enter at Prima Drive, at least until Empire Ranch Road connects to White Rock Road. Therefore, in the short term, the largest percentage of retail traffic (75 percent) is expected to approach via Easton Valley Parkway. Twenty-two percent is expected to be oriented to/from White Rock Road to the east, and three percent will come from the existing Stonebriar and Four Seasons neighborhoods

The trip distribution is illustrated on Figure 5.

Project Traffic Assignment

The peak-hour traffic volumes generated by the proposed project were added to the existing traffic, with the result being the "Existing Plus Project" scenario. Those estimated traffic volumes are shown on Figure 6, which also illustrates the intersection lane configurations.

Intersection Level of Service

Table 8 presents the AM and PM peak hour levels of service at each study intersection under Existing Plus Project conditions. Appendix E contains the technical calculation worksheets.

AM Peak Hour

In the AM peak hour, addition of the project-generated traffic will cause the level of delay at the study intersections to increase somewhat, but no change in level of service is projected, and both study intersections will continue to operate at acceptable levels of service (i.e., LOS A or B). The all-way-STOP-controlled study intersection of Stonebriar Drive/Prima Drive will fail to meet the minimum requirements of the "Peak Hour" signal warrant.

Based on these results, the project-related impact is less than significant in the AM peak hour.

PM Peak Hour

In the PM peak hour, the project-related impact is again relatively small. Stonebriar Drive/Prima Drive will decline from LOS A to LOS B, but both study locations will continue to operate at acceptable levels of service. Traffic volumes at the intersection of Stonebriar Drive/Prima Drive will again be insufficient to meet the "Peak Hour" signal warrant requirements.

	LEGEND
\#\#\# (\#\#\#)	AM (PM) PEAK HOUR
TRAFFIC VOLUMES	
$\boldsymbol{\sim}$	TURN LANE
景	TRAFFIC SIGNAL
STOP SIGN	

In summary, the project-related impact is projected to be less than significant in the PM peak hour.

Roadway Segment Level of Service

AM Peak Hour

Addition of the project-generated traffic will result in no change in level of service on the study road segments, both of which will operate at an acceptable LOS C in both directions.

PM Peak Hour

In the PM peak hour, no change in level of service is expected on three of the four study segments of White Rock Road, where it will operate at an acceptable LOS C. The westbound segment between Stonebriar Drive and Manchester Drive is projected to decline from LOS C to LOS D, but will continue to operate at an acceptable level of service.

Mitigation Measures

The project-related impact at all of the study locations is less than significant, as described above. Therefore, no off-site mitigation measures are recommended in conjunction with the proposed Folsom Heights project.

Table 8 Level of Service Summary ${ }^{1}$ Existing Plus Project Conditions													
Intersection	Traffic Control	AM Peak Hour						PM Peak Hour					
		Existing Conditions			Existing + Project			Existing Conditions			Existing + Project		
		Delay ${ }^{2}$	LOS^{3}	Meet Signal Warrant? ${ }^{4}$	Delay	LOS	Meet Signal Warrant?	Delay	LOS	Meet Signal Warrant?	Delay	LOS	Meet Signal Warrant?
White Rock Rd./Stonebriar Dr./Four Seasons Dr.	Signal	11.7	B	--	18.0	B	--	12.7	B	--	18.8	B	--
Stonebriar Dr./Prima Dr.	All- Way STOP	7.7	A	No	9.0	A	No	7.6	A	No	10.1	B	No
White Rock Road Segment		AM Peak Hour						PM Peak Hour					
		Existing Conditions			Existing + Project			Existing Conditions			Existing + Project		
		PFFS ${ }^{5}$		LOS	PFFS		LOS	PFFS		LOS	PF		LOS
Sacramento/El Dorado Co. Line to Stonebriar Dr.	$E B^{6}$	82.2\%		C	81.8\%		C	80.		C	80.		C
	WB^{7}	79.8\%		C	79.4\%		C	80.		C	80.5		C
Stonebriar Drive to Manchester Drive	EB	80.8\%		C	76.0\%		C	79.		C	75.		C
	WB	78.6\%		C	77.0\%		C	78.		C	73.		D
Notes: Reference: Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010. Average control delay (seconds per vehicle). Level of service. "Peak Hour" signal warrant from "Part 4 - Highway Traffic Signals" of the California Manual on Uniform Traffic Control Devices, November 7, 2014. Percent of free-flow speed. Eastbound. Westbound.													

$\frac{\text { December 30, } 2016}{\text { MRO Engineers, Inc. }} 21$

CUMULATIVE CONDITIONS ANALYSIS

This section describes the results of the analysis of study area traffic operations under cumulative conditions in the weekday AM and PM peak hours. This analysis reflects the level of development anticipated throughout the City of Folsom, including the Folsom Sphere of Influence (SOI) annexation area (i.e., the Folsom Plan Area Specific Plan) and the entire Sacramento/El Dorado County region, through the year 2035. The traffic volume projections were based on a modified version of the SACMET travel demand forecasting model developed and maintained by the Sacramento Area Council of Governments (SACOG).

Analyses are presented for two scenarios: Cumulative No Project conditions and Cumulative Plus Project conditions, reflecting the addition of the traffic generated by the proposed project to the "no project" volumes. To ensure consistency with other recently-conducted traffic analyses in the study area, the future year traffic forecasts employed in this analysis are based on information developed in connection with the traffic analysis for the proposed Russell Ranch project, which is to be located within the Folsom Plan Area Specific Plan (FPASP) boundaries. That traffic analysis, which represents the most recent, comprehensive analysis of traffic in the Folsom Plan Area, is presented in the Draft Environmental Impact Report (DEIR) for the Russell Ranch project. (Reference: Fehr \& Peers, Russell Ranch Final Transportation Impact Study, December 2014.)

Planned Roadway Improvements

Between now and the year 2035, a variety of major transportation system improvements will be implemented in the study area. These improvements, which are reflected in the future year traffic forecasts used in this analysis, include the following:

- Construction of a new interchange at U.S. Highway 50/Oak Avenue Parkway,
- Construction of the U.S. Highway 50/Empire Ranch Road interchange, and
- Widening of White Rock Road to four lanes plus turn lanes from the Sacramento/El Dorado County line to Manchester Drive.

In addition, the traffic projections reflect completion of all roadway system improvements within the Folsom Plan Area Specific Plan, as well as the regional transportation system improvements identified in the SACOG Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS).

Land Use Forecasts

The year 2035 travel demand forecasts developed for the Russell Ranch project, which serve as the basis for the future traffic volumes used in this analysis, assumed the following land uses in the 3,513acre FPASP area:

- 1,455 acres of residential uses (10,210 residential dwelling units),
- 511 acres of office/business/professional and retail/commercial uses,
- 310 acres of schools and City parks,
- 1,063 acres of open space, and
- 174 acres of major circulation facilities.

In addition, the year 2035 land use estimates for the Sacramento region included in the SACMET travel demand forecasting model were assumed.

Cumulative (2035) No Project Conditions

The year 2035 traffic volumes for Cumulative No Project conditions were derived from traffic forecasts developed for the Russell Ranch project in the Folsom Plan Area. In particular, the estimated volumes for White Rock Road/Stonebriar Drive/Four Seasons Drive were derived from the traffic forecasts for White Rock Road/Empire Ranch Road, which is located a short distance to the west. Adjustments were applied to the forecasted volumes to eliminate the traffic associated with the Folsom Heights project, in order to create valid "no project" estimates.

Figure 7 illustrates the Cumulative No Project peak hour traffic volumes employed in this study. Also shown are the intersection lane configurations assumed for year 2035 conditions. As described earlier, White Rock Road will have an additional through lane in each direction in 2035.

Intersection Level of Service

Table 9 summarizes the AM and PM peak hour level of service results for Cumulative No Project conditions. The technical calculation worksheets are presented in Appendix F.

AM Peak Hour

Both study intersections are expected to operate within the County's LOS E standard in the AM peak hour. The signalized study intersection of White Rock Road/Stonebriar Drive/Four Seasons Drive is projected to operate at LOS B, while Stonebriar Drive/Prima Drive will be at LOS A. The projected traffic volumes at Stonebriar Drive/Prima Drive will be insufficient to meet the minimum requirements of the "Peak Hour" signal warrant.

PM Peak Hour

The PM peak hour level of service results are essentially similar to the AM peak hour results. Both intersections will operate at acceptable levels of service (LOS A or B). Again, the traffic volumes at Stonebriar Drive/Prima Drive will not be sufficient to meet the minimum requirements of the "Peak Hour" signal warrant.

Roadway Segment Level of Service

AM Peak Hour

With the planned widening of White Rock Road, LOS B is projected for both eastbound study segments, while the westbound segments are expected to operate at LOS A.

PM Peak Hour

Both segments of White Rock Road are projected to operate at an acceptable LOS B in both directions under this scenario.

Table 9 Level of Service Summary ${ }^{1}$ Cumulative No Project Conditions							
Intersection	Traffic Control	AM Peak Hour			PM Peak Hour		
		Delay ${ }^{2}$	$L^{\text {LOS }}$	Meet Signal Warrant? ${ }^{4}$	Delay	LOS	
White Rock Rd./Stonebriar Dr./Four Seasons Dr.	Signal	11.5	B	--	13.4	B	--
Stonebriar Dr./Prima Dr.	All-Way STOP	7.8	A	No	7.7	A	No
White Rock Road Segment		AM Peak Hour			PM Peak Hour		
		Density ${ }^{5}$		LOS	Den		LOS
Sacramento/El Dorado Co. Line to Stonebriar Dr.	$E B^{6}$	16.3		B	14		B
	WB^{7}	10.6		A	13		B
Stonebriar Drive to Manchester Drive	EB	16.7		B	15		B
	WB	10.6		A	13		B
Notes: Reference: Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010. Average control delay (seconds per vehicle). Level of service. "Peak Hour" signal warrant documented in "Part 4 - Highway Traffic Signals" of the California Manual on Uniform Traffic Control Devices, November 7, 2014. Passenger cars per mile per lane. Eastbound. Westbound.							

Cumulative (2035) Plus Project Conditions

The following sections address the effects of adding the project-generated traffic to the Cumulative No Project volumes derived above.

Project Trip Generation

As described earlier, the proposed project is expected to generate 692 AM peak hour trips (282 inbound and 410 outbound) and 1,157 PM peak hour trips (642 inbound and 515 outbound).

Project Trip Distribution

Because of the assumed buildout of the Folsom Plan Area Specific Plan land uses, the long-term geographic distribution of the project-generated traffic is expected to be substantially different from the short-term distribution described earlier. Specifically, based on the traffic volume forecasts
presented in the Russell Ranch analysis, it was determined that 35 percent of the project-generated trips would approach and depart via Empire Ranch Road to the north; these trips would generally be oriented to and from U.S. Highway 50 and locations within Folsom north of the freeway. An additional 5 percent would be oriented to/from Easton Valley Parkway and about 35 percent of the project's trips would be oriented to and from the west by way of White Rock Road. Of the remaining 25 percent, all of the residential trips would travel to and from the east on White Rock Road. A small portion of the retail trips would begin or end in either the Stonebriar neighborhood or the Four Seasons neighborhood, so that 22 percent would be oriented to/from the east on White Rock Road. Figure 8 illustrates the project trip distribution for cumulative conditions.

Intersection Traffic Volumes

Using the project trip generation and trip distribution information, the project-related trips were assigned to the future road network and added to the Cumulative No Project volumes. The Cumulative Plus Project traffic volumes for the weekday AM and PM peak hours are illustrated on Figure 9.

Intersection Level of Service

Table 10 presents the results of the level of service analysis for the Cumulative Plus Project scenario. Appendix G contains the level of service calculation worksheets.

AM Peak Hour

As under Cumulative No Project conditions, both study intersections are projected to operate acceptably under the El Dorado County LOS E standard. Further, no change in level of service is projected upon addition of the project-generated traffic; LOS A or B is projected. The Stonebriar Drive/Prima Drive intersection will have insufficient traffic to meet the "Peak Hour" signal warrant requirements. In summary, the project's impact is less than significant in the AM peak hour.

PM Peak Hour

Addition of the project-generated traffic in the weekday PM peak hour would result in relatively small increases in intersection delay at the study intersections. Both locations will continue to operate at LOS A or B. The "Peak Hour" signal warrant requirements will not be met at Stonebriar Drive/Prima Drive, so continuation of all-way-STOP control is appropriate. As in the AM peak hour, the project's impact is considered less than significant.

Roadway Segment Level of Service

AM Peak Hour

Although both westbound segments will decline from LOS A to LOS B, all of the study segments will continue to operate at acceptable levels of service - LOS B in all cases. Thus, the project's impact is less than significant.

PM Peak Hour

Both segments are projected to operate at LOS B in both directions, the same as under Cumulative No Project conditions. The project's impact is again considered less than significant.

Table 10Level of Service Summary ${ }^{1}$Cumulative Plus Project Conditions													
Intersection	Traffic Control	AM Peak Hour						PM Peak Hour					
		Cumulative No Project Conditions			Cumulative + Project Conditions			Cumulative No Project Conditions			Cumulative + Project Conditions		
		Delay ${ }^{2}$	$L^{\text {LOS }}{ }^{3}$	Meet Signal Warrant? ${ }^{4}$	Delay	LOS	Meet Signal Warrant?	Delay	LOS	Meet Signal Warrant?	Delay	LOS	Meet Signal Warrant?
White Rock Rd./Stonebriar Dr./Four Seasons Dr.	Signal	11.5	B	--	14.0	B	--	13.4	B	--	16.7	B	--
Stonebriar Dr./Prima Dr.	AllWay STOP	7.8	A	No	8.1	A	No	7.7	A	No	8.2	A	No
White Rock Road Segment		AM Peak Hour						PM Peak Hour					
		Cumulative No Project Conditions			Cumulative + Project Conditions			Cumulative No Project Conditions			Cumulative + Project Conditions		
		Den		LOS	Den		LOS			LOS			LOS
Sacramento/El Dorado Co. Line to Stonebriar Dr.	$E B^{6}$	16		B	17		B	14		B			B
	WB^{7}	10		A	11		B			B			B
Stonebriar Drive to Manchester Drive	EB	16		B	17		B	15		B			B
	WB	10		A	11		B	13		B			B
```Notes: Reference: Transportation Research Board, Highway Capacity Manual 2010, Fifth Edition, December 2010. Average control delay (seconds per vehicle). Level of service. "Peak Hour" signal warrant from "Part 4 - Highway Traffic Signals" of the California Manual on Uniform Traffic Control Devices, November 7, 2014. Passenger cars per mile per lane. Eastbound. Westbound.```													


December 30, 2016	29
MRO Engineers, Inc.	Draft Traffic Impact Analysis

## Mitigation Measures

In both peak-hour periods, the Folsom Heights project is expected to result in less-than-significant impacts to traffic operations at the study intersections and roadway segments under cumulative conditions. Therefore, no off-site mitigation measures are recommended.

## Future Transportation System

Figure 10 illustrates the future transportation system in the study area, including the extension of Prima Drive to serve the proposed project and the additional through lane in each direction on White Rock Road.


LEGEND
SIDEWALK / CROSSWALK
BIKE LANE


RAISED MEDIAN TRAFFIC SIGNAL
stop STOP SIGN

## CONSISTENCY ASSESSMENT

The proposed project's land use, as described above, is identical to the project that was evaluated in the MRO Engineers, Inc., letter report dated March 10, 2016. That analysis determined that the traffic impacts of the proposed Folsom Heights project (as recently modified) had been adequately addressed in the environmental documentation prepared with respect to the entire Folsom Plan Area annexation project. Specifically, the analysis determined that, in all three key time periods (i.e., daily, AM peak hour, and PM peak hour), the currently-proposed land use plan will generate less traffic than the Folsom Heights land use plan addressed in the approved environmental documentation for the Folsom Plan Area annexation. Further, the analysis determined that projected cumulative conditions traffic operating conditions have not changed substantially since the Folsom Plan Area environmental document was certified.

Therefore, the March 2016 analysis concluded that the findings presented in the traffic analysis for the Folsom Plan Area annexation process remained valid for the modified version of the Folsom Heights project, and that no further traffic analysis is necessary for the project.

The recently-submitted Vesting Tentative Subdivision Map was reviewed to ensure that no other significant impacts might occur in connection with implementation of the proposed Folsom Heights project. This assessment was guided by the environmental issue areas addressed in the Environmental Checklist and Addendum - Folsom Plan Area Specific Plan Amendment for the Folsom Heights Area (Ascent Environmental, April 2016), as summarized below.

- Would the project conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, including all modes of travel?

This issue was addressed in the April 2016 Environmental Checklist and Addendum, which found that previously-adopted environmental analyses fully addressed this subject. The currently-proposed project is unchanged from the project addressed at that time. Thus, the current project is consistent with the April 2016 findings.

- Would the project conflict with an applicable congestion management program, including level of service standards, travel demand measures, or other standards?

This issue was addressed in the April 2016 Environmental Checklist and Addendum and the March 2016 MRO Engineers analysis. Because the currently-proposed project is unchanged from the project addressed at that time, the current project is consistent with the March and April 2016 findings.

- Would the project result in a change in air traffic patterns?

This issue was considered in the April 2016 Environmental Checklist and Addendum, which found that the project would have no impact. The currently-proposed project is unchanged from the project addressed at that time. Thus, the current project is consistent with the April 2016 findings.

- Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections)?

The April 2016 Environmental Checklist and Addendum found that the project would have no impact. A review of the recently-submitted Vesting Tentative Subdivision Map was conducted, which indicated that no design features are proposed that would substantially increase hazards. Therefore, no project-related impact would occur, which is consistent with the earlier findings.

- Would the project result in inadequate emergency access?

The April 2016 Environmental Checklist and Addendum found that the prior environmental documentation adequately addressed this issue. A review of the recently-submitted Vesting Tentative Subdivision Map indicates that the current submittal is consistent with previous proposals.

- Would the project conflict with policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

This issue was considered in the April 2016 Environmental Checklist and Addendum, which found that the project would have no impact. Review of the submitted Vesting Tentative Subdivision Map indicates that this conclusion remains valid, and that the current proposal is consistent with previous project plans.

## APPENDIX A

TRAFFIC COUNT SUMMARY SHEETS

## City of El Dorado Hills <br> All Vehicles \& Uturns On Unshifted <br> Peds \& Bikes On Bank 1

Nothing On Bank 2

## National Data and Surveying Services

## (323) 782-0090

ifo@ndsdata.com

Unshifted Count = All Vehicles \& Uturns

	White Rock Rd Southbound					Stonebriar Dr/4 Seasons Dr Westbound					White Rock Rd Northbound					Stonebriar Dr/4 Seasons Dr Eastbound						
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturns Total
7:00	5	145	5	0	155	0	0	1	0	1	1	47	0	0	48	32	0	15	0	47	251	0
7:15	5	141	9	0	155	3	0	2	0	5	3	47	2	0	52	22	0	14	0	36	248	0
7:30	2	169	9	0	180	0	0	6	0	6	1	76	2	0	79	32	0	13	0	45	310	0
7:45	6	172	10	0	188	4	0	7	0	11	4	68	0	0	72	24	0	16	0	40	311	0
Total	18	627	33	0	678	7	0	16	0	23	9	238	4	0	251	110	0	58	0	168	1120	0
8:00	4	135	24	0	163	3	0	7	0	10	0	70	1	0	71	15	0	11	0	26	270	0
8:15	5	93	8	0	106	4	0	3	0	7	3	61	2	0	66	22	0	11	0	33	212	0
8:30	1	72	11	0	84	3	1	14	0	18	4	61	1	0	66	16	0	16	0	32	200	0
8:45	5	39	9	0	53	3	0	10	0	13	4	58	1	0	63	24	0	9	0	33	162	0
Total	15	339	52	0	406	13	1	34	0	48	11	250	5	0	266	77	0	47	0	124	844	0


16:00	10	101	16	0	127	3	0	7	0	10	8	75	5	0	88	14	0	9	0	23	248	0
16:15	8	94	24	0	126	3	0	9	0	12	12	122	3	0	137	11	0	8	0	19	294	0
16:30	10	135	15	0	160	4	0	11	0	15	10	113	6	0	129	17	0	7	0	24	328	0
16:45	12	94	15	0	121	5	0	3	0	8	16	107	5	0	128	18	0	5	0	23	280	0
Total	40	424	70	0	534	15	0	30	0	45	46	417	19	0	482	60	0	29	0	89	1150	0
17:00	18	138	24	0	180	6	0	7	0	13	15	148	3	0	166	9	0	4	0	13	372	0
17:15	8	96	23	0	127	1	0	13	0	14	10	136	2	0	148	14	0	10	0	24	313	0
17:30	9	76	23	0	108	3	0	6	0	9	12	143	5	0	160	16	0	7	0	23	300	0
17:45	3	61	28	0	92	0	0	3	0	3	11	111	6	0	128	13	0	6	0	19	242	0
Total	38	371	98	0	507	10	0	29	0	39	48	538	16	0	602	52	0	27	0	79	1227	0
Grand Total	111	1761	253	0	2125	45	1	109	0	155	114	1443	44	0	1601	299	0	161	0	460	4341	0
Apprch \%	5.2\%	82.9\%	11.9\%	0.0\%		29.0\%	0.6\%	70.3\%	0.0\%		7.1\%	90.1\%	2.7\%	0.0\%		65.0\%	0.0\%	35.0\%	0.0\%			
Total \%	2.6\%	40.6\%	5.8\%	0.0\%	49.0\%	1.0\%	0.0\%	2.5\%	0.0\%	3.6\%	2.6\%	33.2\%	1.0\%	0.0\%	36.9\%	6.9\%	0.0\%	3.7\%	0.0\%	10.6\%	100.0\%	


$\begin{array}{\|c\|} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	White Rock Rd Southbound					Stonebriar Dr/4 Seasons Dr Westbound					White Rock Rd Northbound					Stonebriar Dr/4 Seasons Dr Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 07:15 to 08:15																					
Peak Hour For Entire Intersection Begins at 07:15																					
7:15	5	141	9	0	155	3	0	2	0	5	3	47	2	0	52	22	0	14	0	36	248
7:30	2	169	9	0	180	0	0	6	0	6	1	76	2	0	79	32	0	13	0	45	310
7:45	6	172	10	0	188	4	0	7	0	11	4	68	0	0	72	24	0	16	0	40	311
8:00	4	135	24	0	163	3	0	7	0	10	0	70	1	0	71	15	0	11	0	26	270
Total Volume	17	617	52	0	686	10	0	22	0	32	8	261	5	0	274	93	0	54	0	147	1139
\% App Total	2.5\%	89.9\%	7.6\%	0.0\%		31.3\%	0.0\%	68.8\%	0.0\%		2.9\%	95.3\%	1.8\%	0.0\%		63.3\%	0.0\%	36.7\%	0.0\%		
PHF\|	. 708	. 897	. 542	. 000	. 912	. 625	. 000	. 786	. 000	. 727	. 500	. 859	. 625	. 000	. 867	. 727	. 000	. 844	. 000	. 817	. 916
PM PEAK HOUR			White South	k Rd				nebriar D West	Seasons D   nd				White North					$\begin{aligned} & \text { nebriar D } \\ & \text { Easth } \end{aligned}$	Seasons Dr nd		
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 16:30 to 17:30																					
Peak Hour For Entire Intersection Begins at 16:30																					
16:30	10	135	15	0	160	4	0	11	0	15	10	113	6	0	129	17	0	7	0	24	328
16:45	12	94	15	0	121	5	0	3	0	8	16	107	5	0	128	18	0	5	0	23	280
17:00	18	138	24	0	180	6	0	7	0	13	15	148	3	0	166	9	0	4	0	13	372
17:15	8	96	23	0	127	1	0	13	0	14	10	136	2	0	148	14	0	10	0	24	313
Total Volume	48	463	77	0	588	16	0	34	0	50	51	504	16	0	571	58	0	26	0	84	1293
\% App Total	8.2\%	78.7\%	13.1\%	0.0\%		32.0\%	0.0\%	68.0\%	0.0\%		8.9\%	88.3\%	2.8\%	0.0\%		69.0\%	0.0\%	31.0\%	0.0\%		
PHF\|	. 667	. 839	. 802	. 000	. 817	. 667	. 000	. 654	. 000	. 833	. 797	. 851	. 667	. 000	. 860	. 806	. 000	. 650	. 000	. 875	. 869

## National Data and Surveying Services

City of El Dorado Hills
All Vehicles \& Uturns On Unshifted
Peds \& Bikes On Bank
Nothing On Bank 2


White Rock Rd \& Stonebriar Dr/4 Seasons Dr
Date: $\frac{\text { Thursday }}{\frac{\text { D2/1/2016 }}{\text { Day: }}}$

Stonebriar Dr/4 Seasons Dr



Project \#: $\qquad$ 16-7893-001

AM Peak Hour	$07: 15-08: 15$
NOON Peak Hour	
PM Peak Hour	$16: 30-17: 30$



Total Ins \& Outs


Total Volume Per Leg



All Vehicles \& Uturns On Unshifted
Peds \& Bikes On Bank 1
Nothing On Bank 2

	Prima Dr Southbound					Stonebriar Dr Westbound					Prima Dr Northbound					Stonebriar Dr Eastbound						
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturns Total
7:00	7	0	0	0	7	0	5	1	0	6	0	0	0	0	0	1	40	0	0	41	54	0
7:15	3	0	0	0	3	0	7	5	0	12	0	0	0	0	0	0	35	0	0	35	50	0
7:30	4	0	0	0	4	0	9	1	0	10	0	0	0	0	0	0	40	0	0	40	54	0
7:45	6	0	0	0	6	0	11	3	0	14	0	0	0	0	0	0	34	0	0	34	54	0
Total	20	0	0	0	20	0	32	10	0	42	0	0	0	0	0	1	149	0	0	150	212	0
8:00	4	0	1	0	5	0	23	1	0	24	0	0	0	0	0	0	22	0	0	22	51	0
8:15	3	0	1	0	4	0	9	2	0	11	0	0	0	0	0	0	29	0	0	29	44	0
8:30	2	0	0	0	2	0	11	2	0	13	0	0	0	0	0	0	30	0	0	30	45	0
8:45	6	0	0	0	6	0	12	3	0	15	0	0	0	0	0	0	26	0	0	26	47	0
Total	15	0	2	0	17	0	55	8	0	63	0	0	0	0	0	0	107	0	0	107	187	0


16:00	6	0	0	0	6	0	20	5	0	25	0	0	0	0	0	1	17	0	0	18	49	0
16:15	3	0	0	0	3	0	31	4	0	35	0	0	0	0	0	0	16	0	0	16	54	0
16:30	3	0	0	0	3	0	22	3	0	25	0	0	0	0	0	0	25	0	0	25	53	0
16:45	3	0	0	0	3	0	27	4	0	31	0	0	0	0	0	0	16	0	0	16	50	0
Total	15	0	0	0	15	0	100	16	0	116	0	0	0	0	0	1	74	0	0	75	206	0
17:00	1	0	0	0	1	0	36	1	0	37	0	0	0	0	0	1	11	0	0	12	50	0
17:15	4	0	0	0	4	0	31	3	0	34	0	0	0	0	0	0	22	0	0	22	60	0
17:30	2	0	1	0	3	0	30	4	0	34	0	0	0	0	0	0	22	0	0	22	59	0
17:45	3	0	0	0	3	0	29	9	0	38	0	0	0	0	0	0	13	0	0	13	54	0
Total	10	0	1	0	11	0	126	17	0	143	0	0	0	0	0	1	68	0	0	69	223	0
Grand Total	60	0	3	0	63	0	313	51	0	364	0	0	0	0	0	3	398	0	0	401	828	0
Apprch \%	95.2\%	0.0\%	4.8\%	0.0\%		0.0\%	86.0\%	14.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.7\%	99.3\%	0.0\%	0.0\%			
Total \%	7.2\%	0.0\%	0.4\%	0.0\%	7.6\%	0.0\%	37.8\%	6.2\%	0.0\%	44.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%	48.1\%	0.0\%	0.0\%	48.4\%	100.0\%	


$\begin{array}{\|c\|} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Prima Dr Southbound					Stonebriar Dr Westbound					Prima Dr Northbound					Stonebriar Dr Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 07:00 to 08:00																					
Peak Hour For Entire Intersection Begins at 07:00																					
7:00	7	0	0	0	7	0	5	1	0	6	0	0	0	0	0	1	40	0	0	41	54
7:15	3	0	0	0	3	0	7	5	0	12	0	0	0	0	0	0	35	0	0	35	50
7:30	4	0	0	0	4	0	9	1	0	10	0	0	0	0	0	0	40	0	0	40	54
7:45	6	0	0	0	6	0	11	3	0	14	0	0	0	0	0	0	34	0	0	34	54
Total Volume	20	0	0	0	20	0	32	10	0	42	0	0	0	0	0	1	149	0	0	150	212
\% App Total	100.0\%	0.0\%	0.0\%	0.0\%		0.0\%	76.2\%	23.8\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.7\%	99.3\%	0.0\%	0.0\%		
PHF\|	. 714	. 000	. 000	. 000	714	. 000	. 727	. 500	. 000	. 750	. 000	. 000	. 000	. 000	. 000	. 250	931	. 000	. 000	. 915	981
$\begin{array}{\|c} \hline \text { PM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Prima DrSouthbound					Stonebriar Dr Westbound					Prima Dr Northbound					Stonebriar Dr Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 17:00 to 18:00																					
Peak Hour For Entire Intersection Begins at 17:00																					
17:00	1	0	0	0	1	0	36	1	0	37	0	0	0	0	0	1	11	0	0	12	50
17:15	4	0	0	0	4	0	31	3	0	34	0	0	0	0	0	0	22	0	0	22	60
17:30	2	0	1	0	3	0	30	4	0	34	0	0	0	0	0	0	22	0	0	22	59
17:45	3	0	0	0	3	0	29	9	0	38	0	0	0	0	0	0	13	0	0	13	54
Total Volume	10	0	1	0	11	0	126	17	0	143	0	0	0	0	0	1	68	0	0	69	223
\% App Total	90.9\%	0.0\%	9.1\%	0.0\%		0.0\%	88.1\%	11.9\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		1.4\%	98.6\%	0.0\%	0.0\%		
PHF\|	. 625	. 000	. 250	. 000	. 688	. 000	. 875	. 472	. 000	. 941	. 000	. 000	. 000	. 000	. 000	. 250	. 773	. 000	. 000	. 784	. 929

## National Data and Surveying Services

City of El Dorado Hills
All Vehicles \& Uturns On Unshifted
Peds \& Bikes On Bank
Nothing On Bank 2

	Prima Dr Southbound					Stonebriar Dr Westbound					Prima Dr Northbound					Stonebriar Dr Eastbound						
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	Total	Peds Total
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%				
Total \%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	

Prima Dr \& Stonebriar Dr


Total Ins \& Outs


Total Volume Per Leg


VOLUME
White Rock Rd Bet. Stonebriar Dr \& Sacramento/El Dorado County Line
Day: Thursday
City: El Dorado Hills
Date: 12/1/2016
Project \#: CA16_7894_001


## Prepared by NDS/ATD

Project \#: CA16_7894_001 City: El Dorado Hills

Location: White Rock Rd Bet. Stonebriar Dr \&
Date: 12/1/2016


Time	\#1	\#2	\#3	\#4	\# 5	\# 6	\#7	\#8	\#9	\#10	\#11	\#12	\#13	Total
0:00 AM	0	4	1	0	1				,	0		0	0	6
0:15	0	2	0		0	0	0	,	0	0	0	0	0	2
0:30	0	2	1	0	0	0	0	0	0	0	0	0	0	3
0:45	0	3	1	0	0	0	0	-	0	0	0	0	0	4
1:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2
1:15	0	0	$\bigcirc$		0	0	0	0	0	0	0	0	0	0
1:30	$\bigcirc$	1	$\bigcirc$	0	0	$\bigcirc$	0		$\bigcirc$	0	$\bigcirc$	0	0	1
1:45	0	0		0	0	0	0		0	0	0	0	0	0
2:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
2:15	0	,	0	0	0	0	0	0	0	-	0	0	0	1
2:30	0	0	$\bigcirc$	$\bigcirc$	0	0	0	0	0	0	0	0	0	0
2:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
3:00	0	0	1	0	0	0	0	0	0	0	-	0		1
3:15	0	0	0	$\bigcirc$	0	0	0	0	0		0	0	0	0
3:30	?	2	?	?	0	?	0	.	0	0	0	0	0	2
4:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:30	0	1	0	0	0	0	0	0	0	0	0	0	,	1
4:45	0	2	0	0	0	0	0	0	0	0	0	0	0	
5:00	0	4	2	0	1	0	-	0	0	0	0	0	0	7
5:15	0		1	1	0	0	0	0	0	0	0	0	0	${ }^{6}$
5:30	0	11	1	0	0	0	0	0	0	0	0	0	0	12
5:45	1	17	4	0	3	0	0	0	0	0	0	0	0	25
6:00	$\bigcirc$	11	2	1	3	${ }^{\circ}$	0	0	$\bigcirc$	0	0	${ }^{\circ}$	0	17
6:15	0	11	5	0	1	0	0	0	0	0	0	0	0	17
6:30	0	25 43	5	0	${ }_{3}^{3}$	$\bigcirc$	?	0	$\bigcirc$	0	0	0	0	33 61
6:45	$\bigcirc$		8			${ }_{0}$	0	1	$\bigcirc$	$\bigcirc$	0	0	0	61 59
7:175	0	36	6	0	$\begin{array}{r} 10 \\ 6 \end{array}$	0	0	0	0	0	0	0	0	48
7:30	0	35	9	0	10	1	0	0	0	0	。	0		55
7:45	0	58	18	0	9	1	0	1	0	0	0	0		87
8:00	0	35	10	0	6	1	0	0	2	0	0	0	0	54
8:15	0	38	11	1	9	0	0	0	0	0	0	0	0	59
8:30	0	56	16	0	14	1	0	0	$\bigcirc$	0	0	0	0	87
8:45	0	38	8	1	6	1	0	2	0	0	0	0	0	56
9:00		36		$\bigcirc$	7	0	0	0	1	0	0	0	0	53
9:15		19		0	5	0	0	0	0	0	0	0	0	29
9:30	-	${ }^{27}$	9	$3_{3}$	11	$\bigcirc$	0	,	$\bigcirc$	$\bigcirc$	${ }^{\circ}$	$\bigcirc$	0	43
9:45		${ }^{21}$	${ }^{10}$		11	0	0		0	$\bigcirc$	0	0	0	43
10:00		30				1			${ }^{\circ}$	0	${ }^{\circ}$	0	${ }^{\circ}$	${ }^{37}$
10:15		${ }^{26}$	${ }_{6}^{6}$		${ }^{6}$	${ }^{\circ}$			${ }^{\circ}$	0	${ }^{\circ}$	0	$\bigcirc$	40
$\begin{aligned} & \text { 10:30 } \\ & \text { 10:45 } \end{aligned}$	1	38 20	12   8	0	15 6	0	0	0	1	$\bigcirc$	0	0	0	65 36
11:00	0	29	8	-	6	0	0	0	0	0	0	0	0	${ }^{43}$
11:15	0	43	5	0	8	0	0	1	0	0	0	0	0	57
11:30	0	32	7	0	11	0	0	0	0	0	0	0	0	50
11:45	0	37	5	0	11	1	0	0	0	0	0	0	0	54
12:00 PM	0	44	10	0	14	0	0	0	0	0	0	0	0	68
12:15	-	39	9	1	8	0	0	0	0	0	0	0	0	57
12:30	-	37	9	0	6	1	0	-	0	0	0	0	0	53
12:45	0	44			10	1	0	0	0	0	0	0	0	64
13:00	0	41	8	0	14	0		0	0	0	0	0	0	63
13:15	0	34	8	0	11	$\bigcirc$	0	0	0	$\bigcirc$	$\bigcirc$	0	0	53
13:30 13:45	1	58 45	10   12	1	${ }_{9}^{9}$	0	-	0	0	0	0	0	0	66
14:00	0	33	12	0	7	0	0	0	0	0	0	0	0	52
14:15	0	46	9	0	9	0	0	,	0	0	0	0	0	64
14:30	0	59	15	0	10	0	0	0	0	0	0	0		84
14:45	1	67	18	0	15	0	0	0	0	0	0	0	0	101
15:00	0	69	6	0	11	0	0	0	0	0	0	0	0	86
15:15	1	70	24	0	13	0	0	0	0	0	0	0	0	108
15:30	0	57	14	$\bigcirc$	11	$\bigcirc$	0	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	0	0	82
15:45	0	77	26		20	0	-		0	0	0		0	124
16:00	1	62	17	0	6	1	0	0	0	$\bigcirc$	0	0	0	87
16:15	${ }^{\circ}$	98	17	${ }^{\circ}$	17	1	$\bigcirc$	0	${ }^{\circ}$	0	${ }^{\circ}$	0	${ }^{\circ}$	133
${ }^{16: 30}$	$\bigcirc$	${ }^{93}$	21	$\bigcirc$	17	1	0		$\bigcirc$	0	0	0	0	132
16:45	0	88	24	0	16	0	0	0	0	0	0	0	0	128
17:00	1	119	23		15	0	0	0	0	0	0	0	0	158
17:15		116	14		19	0	0		0	0	0	0	0	149
17:30		112	24		19	$\bigcirc$	0	0	0	0	0	0	0	155
17:45		93	15		18	0		,	0	0	0	0	0	126
18:00		${ }^{60}$	14		18	${ }^{\circ}$		${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	,	${ }^{\circ}$	92
${ }^{18: 15}$		$6^{62}$	${ }^{9}$			$\bigcirc$			$\bigcirc$	$\bigcirc$	$\bigcirc$	0	$\bigcirc$	79
18:30 18:45			13   8			0	0	${ }^{\circ}$	0	0	0	0	0	70 59
19:00		36	6	-	6	-		-	0	0	0	0	-	48
19:15	0	21	8	0	3	0	0	0	0	0	0	0	0	32
19:30	0	22	6	0	6	0	0	,	0	0	0	0	0	34
19:45	0	22	4	0	4	0	0	,	0	0	0	0	0	30
20:00		23	${ }^{6}$	1	3	0	0	0	0	0	0	-	0	33
20:15		16	7	0	4	0	0	0	0	0	0	0	0	27
20:30		14			2	0	0	,	0	0	0	0	0	20
20:45		19			4	0	0		0	0	0	,	0	28
21:00		15			0	0		0	$\bigcirc$	$\bigcirc$	0	0	0	17
21:15		12			2	$\bigcirc$			0	0	0	,	0	15
21:30 21:45						0	,			-	0	$\bigcirc$	0	19
21:45 22:00		r ${ }_{6} 10$			0	0	0	0	0	$\bigcirc$	0	0	0	10
22:15	0	2	1	-	1	0	0	-	0	-	0	0	0	4
22:30	0	7	0	0	1	0	0	0	0	0	0	0	0	8
22:45	0	3	1	0	1	0	0	0	0	0	0	0	0	5
23:00		2	2		1	0	0	0	0	0	0	0	0	5
23:15		1	0		0	0	0	,	0	0	0	0	0	1
23:30	0	0	1	$\bigcirc$	1	$\bigcirc$	0	0	0	0	0	-	0	2
23:45				0	1	0	0	0	0	0	0	0	0	5
\%ootatas	$0 \%$	2055   $69 \%$	662\%	${ }^{19}$	573	${ }^{13}$		${ }^{6}$	${ }^{4}$					4184




rime	${ }^{1}$	＊2	＊3	${ }^{4}$	＊ 5	＊6	${ }^{4}$	＊8	＊9	＊10	＊11	＊12	${ }^{13}$	Total												
$0: 00 \mathrm{AM}$																										
0：15		${ }^{3}$						0																		
$0: 30$ $0: 45$		4			$\bigcirc$			$\bigcirc$		－	$\bigcirc$															
1：00																										
1：15		0		0	1						$0$	。														
1：30		1			1			0																		
1：45		1	0		0		0	0		0	0															
${ }^{2: 00}$		2	0	0	$0$			$0$		$\bigcirc$	$0$	0	0													
2：15		${ }_{0}^{1}$			$\bigcirc$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$0$	$0$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\bigcirc$														
2：45		2	－		－		－	0		。	。		－													
3：00												0														
3：15					0			0		$0$	$0$	$\bigcirc$														
3：30 3：45		2 4	$\bigcirc$		1	0	0	$\bigcirc$		$\bigcirc$	$\bigcirc$															
4：00		。		0	1			0				0		1												
4：15		1	1		1		$0$	。	。	$0$	。	。	。													
4：30		5		0	1	0	0	0		。	－	0														
4：45		4	0	0	2	0	0	0		。	0		0													
5:00					$\begin{gathered} 2 \\ 2 \end{gathered}$	$0$		$\bigcirc$			$\begin{gathered} 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	？	10   14												
5：30		29	4	$\stackrel{1}{0}$	2	－	0	\％	－	－	。	－		${ }_{35}^{14}$												
5：45		32			6			0		。	0	0	－	44												
6：00		${ }^{33}$												${ }^{47}$												
6：15		${ }^{65}$			1		$0$	0		$0$	$0$	$0$	0	82												
$\begin{aligned} & \text { 6:30 } \\ & \text { 6:45 } \end{aligned}$		101 144	$\begin{aligned} & 12 \\ & 19 \end{aligned}$		14 ${ }_{23}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$0$	1		－	－	$\bigcirc$	\％	127 188												
7：00		162	26	0	${ }^{31}$							－		221												
7：15		155	28		25			－		$0$	0	0	－	210												
$7: 30$ $7: 45$		178 193	31 46	$\bigcirc$	25 28	1 1	$\bigcirc$	${ }_{3}^{0}$		$\bigcirc$	：	$\bigcirc$	\％	235 271												
8：00	1	145	29	。						。	。			196												
8：15	－	113	30	1	${ }_{21} 1$			－			－	。	$0$	1166												
8：30		127	28	0	24	1		0	－	。	－	0	－	180												
8：45		74	17		10	2	－	2		－	0	－	－	106												
9：00		71	${ }^{15}$	－	${ }^{16}$			$\bigcirc$	1					103												
9：15		49	${ }^{15}$	0	${ }^{13}$	－		$\bigcirc$	1	0	0	$\bigcirc$	－	79												
9：30		［59	11 21	2	8   21	：	\％	：	1	$\bigcirc$	$\bigcirc$	：	！	82 109 109												
10：00	0	64	15	－	12	2	。	。	0	。	。	。		${ }_{93}$												
10：15	－	57	15	2	14	0		1	0	。	－	0	0	89												
10：30	－	76	18	0	26	1	0	0	1	－	0	0	－	122												
10：45		${ }^{45}$	17	0		0	0	0		－		－		78												
11：00	0	${ }_{6}^{65}$	14	0	${ }_{11}^{11}$	0						－		${ }^{91}$												
11：15		${ }^{73}$	${ }_{14}^{14}$		${ }_{12}^{12}$	0		${ }^{1}$		－	$\bigcirc$			100												
11：30 11：45	$\bigcirc$	64 74	15 14	1	17 15	1	！	$:$		$\bigcirc$	1	：	：	97 106												
12：00 PM	0	86	20	0						－		0		125												
12：15	－	73	17	1	13	0	$0$	0		$0$	0	0	0	104												
12：30	$\bigcirc$		${ }^{21}$	$\bigcirc$	${ }^{12}$	1	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$														
12：45		88	14	$\bigcirc$	23			0		－				${ }^{127}$												
13：00	0	${ }^{85}$	${ }^{18}$	－		0								${ }^{119}$												
13：15 13：30	$\bigcirc$	85 89 89	13 17		14 13	$\bigcirc$	$\bigcirc$	0	$\bigcirc$	\％	0	$\bigcirc$	\％	93   123   1												
13：30	－		${ }_{18}^{18}$	${ }_{0}^{1}$	114	－	O	。	。	。	1	。	。	106												
14：00	0	69	${ }^{24}$	2	${ }^{13}$					－	0	0		108												
14：15	－	${ }_{95}$	17		15	1		1		－	0	0	－	${ }^{130}$												
14：30		${ }^{93}$	${ }^{17}$	$\bigcirc$	19	$\bigcirc$	0	$\bigcirc$	$\bigcirc$	－	0	0	－	129												
14：45		102	29	0		0	0	－			－	－	－	152												
15：00		${ }^{128}$	${ }^{20}$	$\bigcirc$	${ }^{16}$									164												
15：15		124	${ }^{34}$		25	0		0		－	0			184												
15：30		126	${ }^{31}$	1	${ }^{23}$	－		－	－	－	0	0		181												
15：45		142	40			0	0	1		。	0			214												
16：00	1	147	32	0	15	1			0		－	0		197												
16：15	0	177	${ }^{33}$	0	28	1	$0$	$\bigcirc$	1	－	0	0	－	240												
16：30 16：45	1	195 172	388	\％	30 27	1	0	0	－	。	．	0		264   238   28												
17：00		239	34	。		。	。			。	。	。		299												
17：15	－	211	26		26	－		0		－	－		0	263												
17：30			${ }^{34}$	0	24	$\bigcirc$	0	0			0	$\bigcirc$	－	242												
17：45		${ }^{147}$	25	0	${ }^{23}$	0	0	0	0	0	0	0		196												
18：00	0	122	25	0		－				－	0			170												
18：15	0	104	${ }^{16}$	$\bigcirc$	${ }^{10}$	$\bigcirc$	$\bigcirc$	1		$\bigcirc$	$\bigcirc$			131												
18：30	－		20	0	${ }^{14}$	0	$\bigcirc$	$\bigcirc$				0		${ }^{111}$												
18：45	－	71	16	－	${ }^{11}$	0	$\bigcirc$				$\bigcirc$															
19：00	$\bigcirc$		${ }_{11}$	$\bigcirc$							0			77												
19：15		35   37   7	${ }^{11}$	$\bigcirc$	8	\％	，	0		：	0	$\bigcirc$		54												
19：30		34 34		－	4	。	。	。	－	－	。	。	－	${ }_{46}$												
20：00	0	${ }^{36}$					0				0	0														
20：15	0	28	8	0			－	0		－	0			40												
20：30		20			4			0			0			${ }^{30}$												
20：45	0	30	9	0	6		0	0			0	－	－	45												
21：00		${ }^{24}$								$\bigcirc$				${ }^{31}$												
21：15	0	20					0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	0		24												
21：30						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$			$\bigcirc$		${ }^{24}$												
21：45	0	11	1	1	4	0	0	0	0	0	0	0	－	17												
22：00											，			${ }^{18}$												
22：15		5		：	1			$\stackrel{\square}{0}$		$\bigcirc$	：	0		15												
22：45	－	5	2	－	1		0	－	0		－	－	－													
23：00												0														
23：15	0	${ }^{2}$	1	0	1	－	－	0	－	－	0	－														
23：30	$\bigcirc$	1	1		1																					
23：45													0													
Totals	12	6150	126	27	1038	20		15			3			8550												
\％otroats	08	22\％	15＊／	$0 \times$	12\％）	\％		$0 \times 1$	0\％		0x			1005												
amvoumes		2372	489	${ }^{19}$	${ }^{436}$	${ }^{13}$		，	s		2			${ }^{3348}$												
	\％	${ }^{288}$	68	$0 \times$	${ }_{5 \%}$	\％		or	O＊		0\％			39\％												
ampeak Hour	5.00	7.00	730	9.30	7.00	8800		7.00	9.00		1100			7.00												
Volume	1	688	${ }^{136}$	，	109	5		3	${ }_{4}$		2			${ }^{937}$												
PMVolumes		${ }^{3785}$	${ }^{79}$	${ }^{13}$	${ }_{6}^{603}$	－		${ }^{6}$						5192												
	\％	448	9\％	$0 \times$	7\％	0\％		$0 \times$	O\％		0x			${ }_{61 \%}^{61 \%}$												
Pm Peak Hour	${ }^{15,5}$	${ }^{1630}$	15.45	${ }^{13,15}$	16.15	1600		15.15	${ }^{1530}$		${ }^{13.00}$			${ }^{1630}$												
Directional Peak Periods All Classes			${ }^{133}{ }_{\text {AM 7－9 }}{ }^{6}$			Noon 12－2			${ }^{1}{ }_{\text {PM 4 } 4.6}$			Off Peak Volumes														
			$\begin{aligned} & \text { Volume } \\ & 1585 \\ & \hline \end{aligned}$	$\leftrightarrow$	$\begin{gathered} \% \\ 19 \% \end{gathered}$	Volume   924	$\leftarrow$	$\begin{gathered} \% \\ 11 \% \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & 1939 \end{aligned}$	$\leftarrow$	$\begin{gathered} \% \\ 23 \% \end{gathered}$	Volume   4092	$\leftrightarrow$	$\begin{gathered} \% \\ 48 \% \end{gathered}$												

## VOLUME

White Rock Rd Bet. Stonebriar Dr \& Manchester Dr
Day: Thursday
Date: 12/1/2016

City: El Dorado Hills
Project \#: CA16_7894_002


## Prepared by NDS/ATD

Project \#: CA16_7894_002 City: El Dorado Hills

Location: White Rock Rd Bet. Stonebriar Dr \&
Date: 12/1/2016




Classification Definitions				
1 Motorcycles	4 Buses	$7>=4$-Axle Single Units	$10>=6$-Axle Single Trailers	13 >=7-Axle Multi-Trilers
2 Passenger Cars	5-Axie, 6 -Tire Single Units	$8<=4$-Axle Single Trailers	11 <=5-Axle Multi-Trailers	
3 2-Axte, 4-Tire Single Units	6 3-Axle Single Units	95 -Axle Single Traiers	12 6-Axle Mutti-Trailers	




White Rock Rd Bet. Stonebriar Dr \& Manchester Dr


## APPENDIX B

## EXISTING CONDITIONS

LEVEL OF SERVICE CALCULATION WORKSHEETS

	4			$\dagger$		4	4	$\dagger$	p		$\dagger$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	F		${ }^{1}$	4	「		\$		${ }^{1}$	F	
Volume (veh/h)	8	261	5	17	617	52	10	0	22	93	0	54
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	9	284	5	18	671	57	11	0	24	101	0	59
Adj No. of Lanes	1	1	0	1	1	1	0	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	17	910	16	32	945	803	16	0	35	165	0	147
Arrive On Green	0.01	0.50	0.50	0.02	0.51	0.51	0.03	0.00	0.03	0.09	0.00	0.09
Sat Flow, veh/h	1774	1825	32	1774	1863	1583	515	0	1124	1774	0	1583
Grp Volume(v), veh/h	9	0	289	18	671	57	35	0	0	101	0	59
Grp Sat Flow(s),veh/h/ln	1774	0	1857	1774	1863	1583	1639	0	0	1774	0	1583
Q Serve(g_s), s	0.2	0.0	4.1	0.4	12.4	0.8	0.9	0.0	0.0	2.4	0.0	1.6
Cycle Q Clear(g_c), s	0.2	0.0	4.1	0.4	12.4	0.8	0.9	0.0	0.0	2.4	0.0	1.6
Prop In Lane	1.00		0.02	1.00		1.00	0.31		0.69	1.00		1.00
Lane Grp Cap(c), veh/h	17	0	926	32	945	803	52	0	0	165	0	147
V/C Ratio(X)	0.54	0.00	0.31	0.57	0.71	0.07	0.68	0.00	0.00	0.61	0.00	0.40
Avail Cap(c_a), veh/h	159	0	2331	199	2380	2023	331	0	0	557	0	497
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.0	0.0	6.6	21.7	8.5	5.6	21.4	0.0	0.0	19.5	0.0	19.1
Incr Delay (d2), s/veh	24.0	0.0	0.2	14.8	1.0	0.0	14.3	0.0	0.0	3.6	0.0	1.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ( $50 \%$ ),veh/In	0.2	0.0	2.1	0.3	6.4	0.4	0.6	0.0	0.0	1.3	0.0	0.8
LnGrp Delay(d),s/veh	46.0	0.0	6.8	36.6	9.5	5.7	35.7	0.0	0.0	23.1	0.0	20.8
LnGrp LOS	D		A	D	A	A	D			C		C
Approach Vol, veh/h		298			746			35			160	
Approach Delay, s/veh		8.0			9.8			35.7			22.3	
Approach LOS		A			A			D			C	


Timer	1	2	3	4	5	6	7	8
Assigned Phs		2	3	4		6	7	8
Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), $s$		5.4	4.8	26.3		8.1	4.4	26.6
Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s		4.0	4.0	4.0		4.0	4.0	4.0
Max Green Setting (Gmax), s		9.0	5.0	56.0		14.0	4.0	57.0
Max Q Clear Time (g_c+11), s		2.9	2.4	6.1		4.4	2.2	14.4
Green Ext Time (p_c), s		0.0	0.0	8.4		0.4	0.0	8.3


Intersection Summary	
HCM 2010 Ctrl Delay	11.7
HCM 2010 LOS	B


Intersection									
Intersection Delay, s/veh	7.7								
Intersection LOS	A								
Movement	WBU	WBL	WBR	NBU	NBT	NBR	SBU	SBL	SBT
Vol, veh/h	0	20	0	0	32	10	0	1	149
Peak Hour Factor	0.92	0.93	0.93	0.92	0.93	0.93	0.92	0.93	0.93
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	22	0	0	34	11	0	1	160
Number of Lanes	0	1	0	0	1	0	0	0	1
Approach		WB			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes		0			1			1	
Conflicting Approach Left		NB						WB	
Conflicting Lanes Left		1			0			1	
Conflicting Approach Right		SB			WB				
Conflicting Lanes Right		1			1			0	
HCM Control Delay		7.7			7.2			7.9	
HCM LOS		A			A			A	


Lane	NBLn1	WBLn1	SBLn1
Vol Left, \%	$0 \%$	$100 \%$	$1 \%$
Vol Thru, \%	$76 \%$	$0 \%$	$99 \%$
Vol Right, \%	$24 \%$	$0 \%$	$0 \%$
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	42	20	150
LT Vol	0	20	1
Through Vol	32	0	149
RT Vol	10	0	0
Lane Flow Rate	45	22	161
Geometry Grp	1	1	1
Degree of Util (X)	0.05	0.027	0.179
Departure Headway (Hd)	3.949	4.488	4.006
Convergence, Y/N	Yes	Yes	Yes
Cap	902	787	895
Service Time	1.995	2.576	2.031
HCM Lane V/C Ratio	0.05	0.028	0.18
HCM Control Delay	7.2	7.7	7.9
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.2	0.1	0.6


	3			7		4	4	$\dagger$	$p$	,	$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\uparrow$		${ }^{7}$	4	「'		*		${ }^{7}$	$\uparrow$	
Volume (veh/h)	51	504	16	48	463	77	16	0	34	58	0	26
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	59	579	18	55	532	89	18	0	39	67	0	30
Adj No. of Lanes	1	1	0	1	1	1	0	1	0	1	1	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	82	902	28	78	931	791	23	0	50	110	0	98
Arrive On Green	0.05	0.50	0.50	0.04	0.50	0.50	0.04	0.00	0.04	0.06	0.00	0.06
Sat Flow, veh/h	1774	1797	56	1774	1863	1583	518	0	1121	1774	0	1583
Grp Volume(v), veh/h	59	0	597	55	532	89	57	0	0	67	0	30
Grp Sat Flow(s), veh/h/ln	1774	0	1853	1774	1863	1583	1639	0	0	1774	0	1583
Q Serve(g_s), s	1.5	0.0	10.9	1.4	9.2	1.4	1.6	0.0	0.0	1.7	0.0	0.8
Cycle Q Clear(g_c), s	1.5	0.0	10.9	1.4	9.2	1.4	1.6	0.0	0.0	1.7	0.0	0.8
Prop In Lane	1.00		0.03	1.00		1.00	0.32		0.68	1.00		1.00
Lane Grp Cap(c), veh/h	82	0	930	78	931	791	74	0	0	110	0	98
V/C Ratio(X)	0.72	0.00	0.64	0.71	0.57	0.11	0.77	0.00	0.00	0.61	0.00	0.31
Avail Cap(c_a), veh/h	424	0	2174	385	2145	1823	320	0	0	424	0	378
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	21.7	0.0	8.4	21.7	8.1	6.1	21.7	0.0	0.0	21.1	0.0	20.7
Incr Delay (d2), s/veh	11.4	0.0	0.7	11.1	0.6	0.1	15.6	0.0	0.0	5.4	0.0	1.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.0	0.0	5.7	0.9	4.7	0.6	1.0	0.0	0.0	1.0	0.0	0.4
LnGrp Delay(d),s/veh	33.0	0.0	9.2	32.8	8.6	6.2	37.4	0.0	0.0	26.5	0.0	22.4
LnGrp LOS	C		A	C	A	A	D			C		C
Approach Vol, veh/h		656			676			57			97	
Approach Delay, s/veh		11.3			10.3			37.4			25.2	
Approach LOS		B			B			D			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration ( $G+Y+R \mathrm{c}$ ), s		6.1	6.0	27.1		6.8	6.1	27.0				
Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ) , s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		9.0	10.0	54.0		11.0	11.0	53.0				
Max Q Clear Time (g_c+11), s		3.6	3.4	12.9		3.7	3.5	11.2				
Green Ext Time (p_c), s		0.1	0.0	10.2		0.1	0.1	10.2				
Intersection Summary												
HCM 2010 Ctrl Delay			12.7									
HCM 2010 LOS			B									


Intersection									
Intersection Delay, s/veh	7.6								
Intersection LOS	A								
Movement	WBU	WBL	WBR	NBU	NBT	NBR	SBU	SBL	SBT
Vol, veh/h	0	10	1	0	126	17	0	1	68
Peak Hour Factor	0.92	0.98	0.98	0.92	0.98	0.98	0.92	0.98	0.98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	10	1	0	129	17	0	1	69
Number of Lanes	0	1	0	0	1	0	0	0	1
Approach		WB			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes		0			1			1	
Conflicting Approach Left		NB						WB	
Conflicting Lanes Left		1			0			1	
Conflicting Approach Right		SB			WB				
Conflicting Lanes Right		1			1			0	
HCM Control Delay		7.6			7.7			7.5	
HCM LOS		A			A			A	


Lane	NBLn1	WBLn1	SBLn1
Vol Left, \%	$0 \%$	$91 \%$	$1 \%$
Vol Thru, \%	$88 \%$	$0 \%$	$99 \%$
Vol Right, \%	$12 \%$	$9 \%$	$0 \%$
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	143	11	69
LT Vol	0	10	1
Through Vol	126	0	68
RT Vol	17	1	0
Lane Flow Rate	146	11	70
Geometry Grp	1	1	1
Degree of Util (X)	0.159	0.014	0.08
Departure Headway (Hd)	3.935	4.433	4.065
Convergence, Y/N	Yes	Yes	Yes
Cap	912	797	879
Service Time	1.957	2.52	2.098
HCM Lane V/C Ratio	0.16	0.014	0.08
HCM Control Delay	7.7	7.6	7.5
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.6	0	0.3


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $274 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $681 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.83   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $15 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.4 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.943 0.985
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	350833
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.7 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $82.2 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.985 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	335 820
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	43.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	28.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	51.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	82.2
Bicycle Level of Service	330.1
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	7.17
Bicycle level of service score, BLOS (Eq. 15-31)	F
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $681 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $274 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.94   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $10 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.4
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.990 0.962
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	732303
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $4.0 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.3 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $79.8 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.990
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	724 294
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	60.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.7
$\qquad$	82.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	79.8
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	724.5
Effective width, Wv (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.28
Bicycle level of service (Exhibit 15-4)	E
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $376 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $686 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.2 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.990 0.995
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	458 831
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.9 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $80.8 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	453 827
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	52.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.7
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	62.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	80.8
Bicycle Level of Service	453.0
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	3.27
Bicycle level of service score, BLOS (Eq. 15-31)	C
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $686 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $376 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.91   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $4 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.3
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.996 0.988
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	757 418
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $3.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.6 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $78.6 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	754 413
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	64.0
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.3
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	83.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	78.6
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	753.8
Effective width, Wv (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.24
Bicycle level of service (Exhibit 15-4)	C
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $571 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $505 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.93   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $12 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.2
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.988 0.977
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	621556
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $2.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.7 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $80.6 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	614 543
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	58.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	35.0
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	77.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	80.6
Bicycle Level of Service	614.0
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	6.05
Bicycle level of service score, BLOS (Eq. 15-31)	F
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $505 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $571 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.88   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $9 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.991 0.991
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	579 655
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.9 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $80.8 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	574
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	57.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	33.1
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	73.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	80.8
Bicycle Level of Service	573.9
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.77
Bicycle level of service score, BLOS (Eq. 15-31)	E
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $596 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $588 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3	
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.997 0.997
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	650641
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.9 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.4 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $79.9 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	648 639
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	60.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	31.9
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	76.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	79.9
Bicycle Level of Service	647.8
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	2.89
Bicycle level of service score, BLOS (Eq. 15-31)	C
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing Conditions
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $588 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $596 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.995 0.995
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	704713
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.6 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $78.6 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	700 710
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	64.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	28.4
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	79.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700



## APPENDIX C

TRIP GENERATION COMPARISON FOLSOM HEIGHTS COMMERCIAL

Table C-1   Trip Generation Comparison ${ }^{1}$ Folsom Heights Commercial										
Scenario	Land Use			Daily		Peak			Peak	
			Size ${ }^{2}$	Trips	In	Out	Total	In	Out	Total
Proposed Commercial (11.8 Acres)	Option A Shopping Center		128,500 SF	8,000	113	69	182	340	369	709
Proposed Commercial (11.8 Acres)	$\begin{aligned} & \text { m } \\ & .0 \bar{\partial} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Supermarket	50,000 SF	5,115	105	65	170	242	232	474
		Retail	78,500 SF	5,800	83	51	134	244	265	509
		TOTAL	128,500 SF	10,915	188	116	304	486	497	983
Notes:   ${ }^{1}$ Reference: Institute of Transportation Engineers, Trip Generation Manual, Ninth Edition, 20   2 Assuming floor area ratio (FAR) of 0.25										

## APPENDIX D

INTERNAL TRIP ESTIMATION SPREADSHEETS

NCHRP 684 Internal Trip Capture Estimation Tool			
Project Name:	Folsom Heights - Proposed	Organization:	
Project Location:	Folsom, CA	Performed By:	
Scenario Description:		Date:	
Analysis Year:		Checked By:	
Analysis Period:	AM Street Peak Hour	Date:	


Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips ${ }^{3}$		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail				304	188	116
Restaurant				0		
Cinema/Entertainment				0		
Residential				398	99	299
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
				702	287	415


Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized
Office						
Retail	1.00	0\%	0\%	1.00	0\%	0\%
Restaurant						
Cinema/Entertainment						
Residential	1.00	0\%	0\%	1.00	0\%	0\%
Hotel						
All Other Land Uses ${ }^{2}$						


Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)							
Origin (From)		Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential		
Office							
Retail							
Restaurant							
Cinema/Entertainment							
Residential							
Hotel							


Table 4-A: Internal Person-Trip Origin-Destination Matrix*															
Origin (From)								Destination (To)						Residential	
	Office	Retail	Restaurant	Cinema/Entertainment	0	0									
Office		0	0	0	0	0									
Retail	0		0	0	0	0									
Restaurant	0	0		0	0	0									
Cinema/Entertainment	0	0	0		0	0									
Residential	0	3	0	0	0	0									
Hotel	0	0	0	0	0	0									


Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	702	287	415	Office	N/A	N/A
Internal Capture Percentage	1\%	2\%	1\%	Retail	2\%	2\%
				Restaurant	N/A	N/A
External Vehicle-Trips ${ }^{5}$	692	282	410	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{6}$	0	0	0	Residential	2\%	1\%
External Non-Motorized Trips ${ }^{6}$	0	0	0	Hotel	N/A	N/A

[^0]| Project Name: | Folsom Heights - Proposed |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analysis Period: | AM Street Peak Hour |  |  |  |  |  |
| Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends |  |  |  |  |  |  |
| Land Use | Table 7-A (D): Entering Trips |  |  | Table 7-A (O): Exiting Trips |  |  |
|  | Veh. Occ. | Vehicle-Trips | Person-Trips* | Veh. Occ. | Vehicle-Trips | Person-Trips* |
| Office | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Retail | 1.00 | 188 | 188 | 1.00 | 116 | 116 |
| Restaurant | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Cinema/Entertainment | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Residential | 1.00 | 99 | 99 | 1.00 | 299 | 299 |
| Hotel | 1.00 | 0 | 0 | 1.00 | 0 | 0 |


Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)							
Origin (From)		Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential		
Office		0	0	0	0	Hotel	
Retail	34		15	0	16	0	
Restaurant	0	0		0	0		
Cinema/Entertainment	0	0	0		0		
Residential	6	3	60	0	0		
Hotel	0	0	0	0	0		


Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		60	0	0	0	0
Retail	0		0	0	2	0
Restaurant	0	15		0	5	0
Cinema/Entertainment	0	0	0		0	0
Residential	0	32	0	0		0
Hotel	0	8	0	0	0	


Table 9-A (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	3	185	188	185	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	2	97	99	97	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0


Table 9-A (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	2	114	116	114	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	3	296	299	296	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A
${ }^{2}$ Person-Trips
${ }^{3}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

NCHRP 684 Internal Trip Capture Estimation Tool			
Project Name:	Folsom Heights - Proposed		Organization:
Project Location:	Folsom, CA		
Scenario Description:		Performed By:	
Analysis Year:		Date:	
Analysis Period:		Checked By:	
		Date:	


Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips ${ }^{3}$		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail				983	486	497
Restaurant				0		
Cinema/Entertainment				0		
Residential				530	334	196
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
				1,513	820	693


Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized
Office						
Retail	1.00	0\%	0\%	1.00	0\%	0\%
Restaurant						
Cinema/Entertainment						
Residential	1.00	0\%	0\%	1.00	0\%	0\%
Hotel						
All Other Land Uses ${ }^{2}$						


Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						


Table 4-P: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	0		0	0	129	0
Restaurant	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	0	49	0	0		0
Hotel	0	0	0	0	0	


Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	1,513	820	693	Office	N/A	N/A
Internal Capture Percentage	24\%	22\%	26\%	Retail	10\%	26\%
				Restaurant	N/A	N/A
External Vehicle-Trips ${ }^{5}$	1,157	642	515	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{6}$	0	0	0	Residential	39\%	25\%
External Non-Motorized Trips ${ }^{6}$	0	0	0	Hotel	N/A	N/A

[^1]| Project Name: | Folsom Heights - Proposed |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analysis Period: | PM Street Peak Hour |  |  |  |  |  |
| Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends |  |  |  |  |  |  |
| Land Use | Table 7-P (D): Entering Trips |  |  | Table 7-P (O): Exiting Trips |  |  |
|  | Veh. Occ. | Vehicle-Trips | Person-Trips* | Veh. Occ. | Vehicle-Trips | Person-Trips* |
| Office | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Retail | 1.00 | 486 | 486 | 1.00 | 497 | 497 |
| Restaurant | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Cinema/Entertainment | 1.00 | 0 | 0 | 1.00 | 0 | 0 |
| Residential | 1.00 | 334 | 334 | 1.00 | 196 | 196 |
| Hotel | 1.00 | 0 | 0 | 1.00 | 0 | 0 |


Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	10		144	20	129	25
Restaurant	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	8	82	41	0		6
Hotel	0	0	0	0	0	


Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		39	0	0	13	0
Retail	0		0	0	154	0
Restaurant	0	243		0	53	0
Cinema/Entertainment	0	19	0		13	0
Residential	0	49	0	0		0
Hotel	0	10	0	0	0	


Table 9-P (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	49	437	486	437	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	129	205	334	205	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0


Table 9-P (O): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	129	368	497	368	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	49	147	196	147	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

[^2]
## APPENDIX E

EXISTING PLUS PROJECT LEVEL OF SERVICE CALCULATION WORKSHEETS

	*			$\dagger$		4	4	$\dagger$	\%		$\dagger$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	F		${ }^{4}$	4	「		$\uparrow$		${ }^{1}$	t	
Volume (veh/h)	15	261	5	17	617	156	10	1	22	310	1	75
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	16	284	5	18	671	170	11	1	24	337	1	82
Adj No. of Lanes	1	1	0	1	1	1	0	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	28	842	15	31	863	733	15	1	33	413	4	365
Arrive On Green	0.02	0.46	0.46	0.02	0.46	0.46	0.03	0.03	0.03	0.23	0.23	0.23
Sat Flow, veh/h	1774	1825	32	1774	1863	1583	502	46	1096	1774	19	1567
Grp Volume(v), veh/h	16	0	289	18	671	170	36	0	0	337	0	83
Grp Sat Flow(s),veh/h/ln	1774	0	1857	1774	1863	1583	1644	0	0	1774	0	1586
Q Serve(g_s), s	0.6	0.0	6.1	0.6	18.7	4.0	1.3	0.0	0.0	11.1	0.0	2.6
Cycle Q Clear(g_c), s	0.6	0.0	6.1	0.6	18.7	4.0	1.3	0.0	0.0	11.1	0.0	2.6
Prop In Lane	1.00		0.02	1.00		1.00	0.31		0.67	1.00		0.99
Lane Grp Cap(c), veh/h	28	0	857	31	863	733	49	0	0	413	0	369
V/C Ratio(X)	0.58	0.00	0.34	0.59	0.78	0.23	0.73	0.00	0.00	0.82	0.00	0.22
Avail Cap(c_a), veh/h	115	0	1381	143	1415	1203	186	0	0	746	0	667
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	30.2	0.0	10.6	30.2	13.9	10.0	29.8	0.0	0.0	22.5	0.0	19.2
Incr Delay (d2), s/veh	17.8	0.0	0.2	16.8	1.6	0.2	18.9	0.0	0.0	4.0	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ( $50 \%$ ),veh/In	0.4	0.0	3.2	0.4	9.9	1.8	0.9	0.0	0.0	5.9	0.0	1.2
LnGrp Delay(d),s/veh	48.1	0.0	10.9	47.0	15.5	10.1	48.7	0.0	0.0	26.5	0.0	19.5
LnGrp LOS	D		B	D	B	B	D			C		B
Approach Vol, veh/h		305			859			36			420	
Approach Delay, s/veh		12.8			15.1			48.7			25.1	
Approach LOS		B			B			D			C	


Timer	1	2	3	4	5	6	7	8
Assigned Phs		2	3	4		6	7	8
Phs Duration ( $G+Y+R \mathrm{c}$ ), s		5.8	5.1	32.5		18.4	5.0	32.6
Change Period ( $Y+R \mathrm{R}$ ), s		4.0	4.0	4.0		4.0	4.0	4.0
Max Green Setting (Gmax), s		7.0	5.0	46.0		26.0	4.0	47.0
Max Q Clear Time (g_c +11 ), s		3.3	2.6	8.1		13.1	2.6	20.7
Green Ext Time (p_c), s		0.0	0.0	8.7		1.3	0.0	7.9


Intersection Summary	
HCM 2010 Ctrl Delay	18.0
HCM 2010 LOS	B


Intersection												
Intersection Delay, s/veh Intersection LOS		9										
	A											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	1	1	218	0	20	2	0	0	104	32	10
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.93	0.92	0.93	0.92	0.92	0.93	0.93
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1	1	237	0	22	2	0	0	113	34	11
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0


Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	2	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	2	1	1
HCM Control Delay	8.8	8.4	9.3
HCM LOS	A	A	A


Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1
Vol Left, \%	$100 \%$	$0 \%$	$0 \%$	$91 \%$	$1 \%$
Vol Thru, \%	$0 \%$	$76 \%$	$0 \%$	$9 \%$	$98 \%$
Vol Right, \%	$0 \%$	$24 \%$	$99 \%$	$0 \%$	$1 \%$
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	104	42	220	22	152
LT Vol	104	0	1	20	1
Through Vol	0	32	1	2	149
RT Vol	0	10	218	0	2
Lane Flow Rate	113	45	239	24	163
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.181	0.064	0.278	0.034	0.218
Departure Headway (Hd)	5.761	5.09	4.185	5.209	4.812
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	621	701	858	685	742
Service Time	3.514	2.842	2.214	3.261	2.864
HCM Lane V/C Ratio	0.182	0.064	0.279	0.035	0.22
HCM Control Delay	9.8	8.2	8.8	8.4	9.2
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.7	0.2	1.1	0.1	0.8


Intersection				
Intersection Delay, s/veh				
Intersection LOS	SBU	SBL	SBT	SBR
Movement	0	1	149	2
Vol, veh/h	0.92	0.93	0.93	0.92
Peak Hour Factor	2	2	2	2
Heavy Vehicles, \%	0	1	160	2
Mvmt Flow	0	0	1	0
Number of Lanes				
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	2			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	9.2			
HCM LOS	A			

## Lane

	4			7			4	¢	\%	$t$	\%	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\uparrow$		${ }^{7}$	4	「'		$\leqslant$		*	$\dagger$	
Volume (veh/h)	66	504	16	48	463	306	16	4	34	235	4	36
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q $(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	76	579	18	55	532	352	18	5	39	270	5	41
Adj No. of Lanes	1	1	0	1	1	1	0	1	0	1	1	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	98	829	26	70	831	706	22	6	48	339	33	275
Arrive On Green	0.05	0.46	0.46	0.04	0.45	0.45	0.05	0.05	0.05	0.19	0.19	0.19
Sat Flow, veh/h	1774	1797	56	1774	1863	1583	480	133	1041	1774	175	1435
Grp Volume(v), veh/h	76	0	597	55	532	352	62	0	0	270	0	46
Grp Sat Flow(s),veh/h/ln	1774	0	1853	1774	1863	1583	1655	0	0	1774	0	1610
Q Serve(g_s), s	2.6	0.0	15.7	1.9	13.5	9.7	2.3	0.0	0.0	8.9	0.0	1.5
Cycle Q Clear(g_c), s	2.6	0.0	15.7	1.9	13.5	9.7	2.3	0.0	0.0	8.9	0.0	1.5
Prop In Lane	1.00		0.03	1.00		1.00	0.29		0.63	1.00		0.89
Lane Grp Cap(c), veh/h	98	0	855	70	831	706	76	0	0	339	0	308
V/C Ratio(X)	0.78	0.00	0.70	0.78	0.64	0.50	0.81	0.00	0.00	0.80	0.00	0.15
Avail Cap(c_a), veh/h	261	0	1363	203	1310	1113	216	0	0	696	0	632
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	28.5	0.0	13.1	29.1	13.1	12.1	28.9	0.0	0.0	23.6	0.0	20.6
Incr Delay (d2), s/veh	12.5	0.0	1.0	16.8	0.8	0.5	18.1	0.0	0.0	4.3	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	1.6	0.0	8.2	1.2	7.1	4.3	1.4	0.0	0.0	4.8	0.0	0.7
LnGrp Delay(d),s/veh	41.0	0.0	14.1	45.9	14.0	12.6	47.0	0.0	0.0	27.8	0.0	20.8
LnGrp LOS	D		B	D	B	B	D			C		C
Approach Vol, veh/h		673			939			62			316	
Approach Delay, s/veh		17.2			15.3			47.0			26.8	
Approach LOS		B			B			D			C	


Timer	1	2	3	4	5	6	7	8
Assigned Phs	2	3	4	6	7	8		
Phs Duration (G+Y+Rc), s	6.8	6.4	32.2	15.7	7.4	31.3		
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0		
Max Green Setting (Gmax), s	8.0	7.0	45.0	24.0	9.0	43.0		
Max Q Clear Time (g_c+I1), s	4.3	3.9	17.7	10.9	4.6	15.5		
Green Ext Time (p_c), s	0.1	0.0	10.5	0.9	0.0	10.6		


Intersection Summary	
HCM 2010 Ctrl Delay	18.8
HCM 2010 LOS	B


Intersection												
Intersection Delay, s/veh	10.1											
Intersection LOS	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Movement	0	4	3	181	0	10	4	1	0	229	126	17
Vol, veh/h	0.92	0.92	0.92	0.92	0.92	0.98	0.92	0.98	0.92	0.92	0.98	0.98
Peak Hour Factor	2	2	2	2	2	2	2	2	2	2	2	2
Heavy Vehicles, \%	0	4	3	197	0	10	4	1	0	249	129	17
Mvmt Flow	0	0	1	0	0	0	1	0	0	1	1	0


Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	2	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	2	1	1
HCM Control Delay	9.1	8.6	10.9
HCM LOS	A	A	B


Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1
Vol Left, \%	$100 \%$	$0 \%$	$2 \%$	$67 \%$	$1 \%$
Vol Thru, \%	$0 \%$	$88 \%$	$2 \%$	$27 \%$	$92 \%$
Vol Right, \%	$0 \%$	$12 \%$	$96 \%$	$7 \%$	$7 \%$
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	229	143	188	15	74
LT Vol	029	0	4	10	1
Through Vol	0	126	3	4	68
RT Vol	0	17	181	1	5
Lane Flow Rate	74	146	204	16	76
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.388	0.203	0.256	0.023	0.105
Departure Headway (Hd)	5.605	5.019	4.508	5.425	4.965
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	640	712	795	656	717
Service Time	3.361	2.774	2.543	3.487	3.031
HCM Lane V/C Ratio	0.389	0.205	0.257	0.024	0.106
HCM Control Delay	11.9	9.1	9.1	8.6	8.6
HCM Lane LOS	B	A	A	A	A
HCM 95th-tile Q	1.8	0.8	1	0.1	0.4


Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	1	68	5
Peak Hour Factor	0.92	0.98	0.98	0.92
Heavy Vehicles, \%	2	2	2	2
Mvmt Flow	0	1	69	5
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		2		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		8.6		
HCM LOS		A		

## Lane

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $281 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $702 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.83   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $15 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.4 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.943 0.985
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	359859
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.5 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $81.8 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.985 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	344 846
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	44.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.6
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	52.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700



DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $702 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $281 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.94   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $10 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.4
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.990 0.962
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	754 311
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $3.9 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.1 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $79.4 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.990
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	747 302
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	61.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.1
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$ )	82.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	79.4
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	746.8
Effective width, Wv (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.30
Bicycle level of service (Exhibit 15-4)	E
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $593 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $790 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.0
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.995 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	718952
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.1 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $76.0 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	67.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	23.3
$\qquad$	77.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	76.0
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	714.5
Effective width, Wv (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.50
Bicycle level of service (Exhibit 15-4)	D
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period AM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $790 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $593 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.0 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	1.000 0.996
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	868 654
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.6 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $77.0 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	868 652
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	70.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	25.7
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	84.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	77.0
Bicycle Level of Service	868.1
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	3.31
Bicycle level of service score, BLOS (Eq. 15-31)	C
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $586 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $515 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.93   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $12 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.988 0.988
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	638 560
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $2.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.6 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $80.4 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	630 554
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	58.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	34.2
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	76.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	80.4
Bicycle Level of Service	630.1
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	6.06
Bicycle level of service score, BLOS (Eq. 15-31)	F
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) $>=1,700$ pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Dr. to County Line   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                  Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $515 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $586 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.88   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $9 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.991 0.991
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	591 672
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.7 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $80.5 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	585 666
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	58.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	32.3
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	73.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation 15-11 - Class III only)	80.5
Bicycle Level of Service	585.2
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.78
Bicycle level of service score, BLOS (Eq. 15-31)	E
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) >=1,700 pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit 15-20 provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - EB/NB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $773 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $817 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.92   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $3 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.1 1.0
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.997 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	843 888
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $44.5 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $75.1 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	840888
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	71.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	23.0
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	83.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53
Capacity, $\mathrm{C}_{\mathrm{d}, \text { ATS }}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700


Percent Free-Flow Speed PFFS $\mathrm{d}_{\mathrm{d}}$ (Equation $15-11$ - Class III only)	75.1
Bicycle Level of Service	840.2
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	24.00
Effective width, Wv (Eq. 15-29) ft	4.79
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	3.02
Bicycle level of service score, BLOS (Eq. 15-31)	C
Bicycle level of service (Exhibit 15-4)	
Notes	
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific   downgrade segments are treated as level terrain.   2. If $v_{i}\left(v_{d}\right.$ or $v_{o}$ ) >=1,700 pc/h, terminate analysis--the LOS is F.   3. For the analysis direction only and for v>200 veh/h.   4. For the analysis direction only   5. Exhibit $15-20$ provides coefficients a and b for Equation 15-10.   6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	


DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst NKL   Agency or Company MRO Engineers, Inc.   Date Performed $12 / 19 / 2016$   Analysis Time Period PM Peak Hour	Highway / Direction of Travel White Rock Road - WB/SB   From/To Stonebriar Drive to Manchester   Jurisdiction El Dorado County, CA   Analysis Year Existing + Project
Project Description: Folsom Heights	
Input Data	
                      Analysis direction vol., $\mathrm{V}_{\mathrm{d}}$ $817 \mathrm{veh} / \mathrm{h}$   Opposing direction vol., $\mathrm{V}_{\mathrm{o}}$ $773 \mathrm{veh} / \mathrm{h}$   Shoulder width ft 6.0   Lane Width ft 12.0   Segment Length mi 0.3   Average Trave Speed	$\square$ Class I highway $\square$ Class II   highway $\square$ Class III highway    Terrain $\quad \checkmark$ Level $\square$ Rolling   Grade Length mi Up/down   Peak-hour factor, PHF 0.84   No-passing zone $100 \%$   \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $5 \%$    \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$    $0 \%$    Access points mi    $3 / \mathrm{mi}$
Average Travel Speed	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-11 or 15-12)	1.0 1.0
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	973 920
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$   Total demand flow rate, both directions, $v$   Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$   Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15)   $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $60.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $0.0 \mathrm{mi} / \mathrm{h}$   Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.8 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $59.3 \mathrm{mi} / \mathrm{h}$   Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $43.3 \mathrm{mi} / \mathrm{h}$   $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $73.1 \%$   Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) $\quad$ Opposing Direction (o)
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	973 920
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$ )	76.1
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	20.3
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	86.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.57
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1700
Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{PTSF}}$ (Equation 15-13) veh/h	1700



## APPENDIX F

CUMULATIVE NO PROJECT
LEVEL OF SERVICE CALCULATION WORKSHEETS

	4		$\geqslant$	$\dagger$			4	4	7		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	瑯		${ }^{4}$	个个	「		$\dagger$		${ }^{7}$	$\hat{1}$	
Volume（veh／h）	10	1490	10	20	1060	60	10	－	30	100	0	70
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate，veh／h	11	1620	11	22	1152	65	11	0	33	109	0	76
Adj No．of Lanes	，	2	0	，	2	1	0	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2		，	2	2	2	2	2	2	2	2	2
Cap，veh／h	19	2379	16	34	2367	1059	13	0	40	155	0	138
Arrive On Green	0.01	0.66	0.66	0.02	0.67	0.67	0.03	0.00	0.03	0.09	0.00	0.09
Sat Flow，veh／h	1774	3604	24	1774	3539	1583	407	0	1220	1774	0	1583
Grp Volume（v），veh／h	11	795	836	22	1152	65	44	0	0	109	0	76
Grp Sat Flow（s），veh／h／ln	1774	1770	1858	1774	1770	1583	1627	0	0	1774	0	1583
Q Serve（g＿s），s	0.5	22.1	22.2	1.0	12.7	1.1	2.1	0.0	0.0	4.8	0.0	3.7
Cycle Q Clear（g＿c），s	0.5	22.1	22.2	1.0	12.7	1.1	2.1	0.0	0.0	4.8	0.0	3.7
Prop In Lane	1.00		0.01	1.00		1.00	0.25		0.75	1.00		1.00
Lane Grp Cap（c），veh／h	19	1168	1227	34	2367	1059	53	0	0	155	0	138
V／C Ratio（X）	0.57	0.68	0.68	0.64	0.49	0.06	0.83	0.00	0.00	0.71	0.00	0.55
Avail Cap（c＿a），veh／h	89	1309	1375	111	2662	1191	163	0	0	267	0	238
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	39.3	8.4	8.4	38.8	6.5	4.6	38.4	0.0	0.0	35.4	0.0	34.9
Incr Delay（d2），s／veh	24.0	1.3	1.2	18.2	0.2	0.0	26.3	0.0	0.0	5.8	0.0	3.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ $50 \%$ ），veh／ln	0.4	11.0	11.6	0.7	6.1	0.5	1.3	0.0	0.0	2.6	0.0	1.7
LnGrp Delay（d），s／veh	63.3	9.6	9.6	57.0	6.6	4.6	64.7	0.0	0.0	41.2	0.0	38.3
LnGrp LOS	E	A	A	E	A	A	E			D		D
Approach Vol，veh／h		1642			1239			44			185	
Approach Delay，s／veh		9.9			7.4			64.7			40.0	
Approach LOS		A			A			E			D	


Timer	1	2	3	4	5	6	7	8
Assigned Phs	2	3	4	6	7	8		
Phs Duration（G＋Y＋Rc），s	6.6	5.5	56.7		10.9	4.9	57.3	
Change Period（Y＋Rc），s	4.0	4.0	4.0	4.0	4.0	4.0		
Max Green Setting（Gmax），s	8.0	5.0	59.0	12.0	4.0	60.0		
Max Q Clear Time（g＿c +11$)$ ），s	4.1	3.0	24.2	6.8	2.5	14.7		
Green Ext Time（p＿c），s	0.0	0.0	28.5	0.3	0.0	35.2		


Intersection Summary	
HCM 2010 Ctrl Delay	11.5
HCM 2010 LOS	B


Intersection									
Intersection Delay, s/veh	7.8								
Intersection LOS	A								
Movement	WBU	WBL	WBR	NBU	NBT	NBR	SBU	SBL	SBT
Vol, veh/h	0	20	0	0	50	20	0	5	150
Peak Hour Factor	0.92	0.93	0.93	0.92	0.93	0.93	0.92	0.93	0.93
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	22	0	0	54	22	0	5	161
Number of Lanes	0	1	0	0	1	0	0	0	1
Approach		WB			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes		0			1			1	
Conflicting Approach Left		NB						WB	
Conflicting Lanes Left		1			0			1	
Conflicting Approach Right		SB			WB				
Conflicting Lanes Right		1			1			0	
HCM Control Delay		7.8			7.3			8	
HCM LOS		A			A			A	


Lane	NBLn1	WBLn1	SBLn1
Vol Left, \%	$0 \%$	$100 \%$	$3 \%$
Vol Thru, \%	$71 \%$	$0 \%$	$97 \%$
Vol Right, \%	$29 \%$	$0 \%$	$0 \%$
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	70	20	155
LT Vol	0	20	5
Through Vol	50	0	150
RT Vol	20	0	0
Lane Flow Rate	75	22	167
Geometry Grp	1	1	1
Degree of Util (X)	0.082	0.028	0.187
Departure Headway (Hd)	3.924	4.65	4.034
Convergence, Y/N	Yes	Yes	Yes
Cap	907	774	888
Service Time	1.975	2.65	2.065
HCM Lane V/C Ratio	0.083	0.028	0.188
HCM Control Delay	7.3	7.8	8
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.3	0.1	0.7


	4	$\rightarrow$		7	$4$	4	4	9	$p$		1	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {W }}$		${ }^{1}$	中4	F゙		4		${ }^{*}$	$\uparrow$	
Volume（veh／h）	60	1400	20	50	1340	90	20	0	40	60	0	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate，veh／h	69	1609	23	57	1540	103	23	0	46	69	0	34
Adj No．of Lanes	1	2	0	1	2	1	0	1	0	1	1	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	89	2354	34	73	2301	1029	29	0	58	102	0	91
Arrive On Green	0.05	0.66	0.66	0.04	0.65	0.65	0.05	0.00	0.05	0.06	0.00	0.06
Sat Flow，veh／h	1774	3572	51	1774	3539	1583	547	0	1095	1774	0	1583
Grp Volume（v），veh／h	69	796	836	57	1540	103	69	0	0	69	0	34
Grp Sat Flow（s），veh／h／ln	1774	1770	1854	1774	1770	1583	1642	0	0	1774	0	1583
Q Serve（g＿s），s	3.2	23.5	23.6	2.7	22.7	2.1	3.5	0.0	0.0	3.2	0.0	1.7
Cycle Q Clear（g＿c），s	3.2	23.5	23.6	2.7	22.7	2.1	3.5	0.0	0.0	3.2	0.0	1.7
Prop In Lane	1.00		0.03	1.00		1.00	0.33		0.67	1.00		1.00
Lane Grp Cap（c），veh／h	89	1166	1222	73	2301	1029	87	0	0	102	0	91
V／C Ratio（X）	0.78	0.68	0.68	0.78	0.67	0.10	0.80	0.00	0.00	0.68	0.00	0.37
Avail Cap（c＿a），veh／h	189	1238	1297	168	2434	1089	156	0	0	189	0	169
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	39.6	8.9	8.9	40.1	9.1	5.5	39.5	0.0	0.0	39.0	0.0	38.3
Incr Delay（d2），s／veh	13.3	1.4	1.4	16.3	0.7	0.0	15.0	0.0	0.0	7.7	0.0	2.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	1.9	11.7	12.3	1.6	11.1	0.9	2.0	0.0	0.0	1.8	0.0	0.8
LnGrp Delay（d），s／veh	52.9	10.4	10.3	56.4	9.8	5.6	54.5	0.0	0.0	46.7	0.0	40.8
LnGrp LOS	D	B	B	E	A	A	D			D		D
Approach Vol，veh／h		1701			1700			69			103	
Approach Delay，s／veh		12.1			11.1			54.5			44.7	
Approach LOS		B			B			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s		8.5	7.5	59.6		8.8	8.2	58.8				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting（Gmax），s		8.0	8.0	59.0		9.0	9.0	58.0				
Max Q Clear Time（g＿c＋l1），s		5.5	4.7	25.6		5.2	5.2	24.7				
Green Ext Time（p＿c），s		0.1	0.0	30.0		0.1	0.0	29.9				
Intersection Summary												
HCM 2010 Ctrl Delay			13.4									
HCM 2010 LOS			B									


Intersection									
Intersection Delay, s/veh	7.7								
Intersection LOS	A								
Movement	WBU	WBL	WBR	NBU	NBT	NBR	SBU	SBL	SBT
Vol, veh/h	0	10	0	0	130	20	0	5	80
Peak Hour Factor	0.92	0.98	0.98	0.92	0.98	0.98	0.92	0.98	0.98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	10	0	0	133	20	0	5	82
Number of Lanes	0	1	0	0	1	0	0	0	1
Approach		WB			NB			SB	
Opposing Approach					SB			NB	
Opposing Lanes		0			1			1	
Conflicting Approach Left		NB						WB	
Conflicting Lanes Left		1			0			1	
Conflicting Approach Right		SB			WB				
Conflicting Lanes Right		1			1			0	
HCM Control Delay		7.7			7.8			7.6	
HCM LOS		A			A			A	


Lane	NBLn1	WBLn1	SBLn1
Vol Left, \%	$0 \%$	$100 \%$	$6 \%$
Vol Thru, \%	$87 \%$	$0 \%$	$94 \%$
Vol Right, \%	$13 \%$	$0 \%$	$0 \%$
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	0	10	85
LT Vol	0	10	5
Through Vol	130	0	80
RT Vol	20	0	0
Lane Flow Rate	153	10	87
Geometry Grp	1	1	1
Degree of Util (X)	0.167	0.013	0.098
Departure Headway (Hd)	3.936	4.544	4.077
Convergence, Y/N	Yes	Yes	Yes
Cap	911	776	877
Service Time	1.962	2.641	2.111
HCM Lane V/C Ratio	0.168	0.013	0.099
HCM Control Delay	7.8	7.7	7.6
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.6	0	0.3

## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to County Line
Anale Performed	12/19/2016	El Dorado County, CA	
Analysis Time Period	AM Peak Hour		Cumulative No Project


Flow Inputs
Volume, V (veh/h)

AADT(veh/h)
Peak-Hour Prop of AADT (veh/d)
Peak-Hour Direction Prop, D DDHV (veh/h)
Driver Type Adjustment 1.00

Peak-Hour Factor, PHF	0.83
\%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$	15
\%RVs, $\mathrm{P}_{\mathrm{R}}$	0
General Terrain:	Level
Grade Length (mi)	0.00
$\quad$ Up/Down \%	0.00
Number of Lanes	2

Calculate Flow Adjustments

$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.930



## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$


## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to Manchester D
Anate Performed	12/19/2016	El Dorado County, CA	
Analysis Time Period	AM Peak Hour		Cumulative No Project

## Flow Inputs

Volume, V (veh/h)	1620	Peak-Hour Factor, PHF	0.83
AADT(veh/h)		\%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$	5
Peak-Hour Prop of AADT (veh/d		\%RVs, $\mathrm{P}_{\mathrm{R}}$	0
Peak-Hour Direction Prop, D		General Terrain:	Level
DDHV (veh/h)		Grade Length (mi)	0.00
Driver Type Adjustment	1.00	Up/Down \%	0.00
		Number of Lanes	2
Calculate Flow Adjustments			
$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$E_{T}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.976



## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Information} \& \multicolumn{2}{|l|}{Site Information} \\
\hline \begin{tabular}{l}
Analyst \\
Agency or Company \\
Date Performed \\
Analysis Time Period
\end{tabular} \& \begin{tabular}{l}
NKL \\
MRO Engineers, Inc. 12/19/2016 \\
AM Peak Hour
\end{tabular} \& Highway/Direction to Travel From/To Jurisdiction Analysis Year \& \begin{tabular}{l}
White Rock Road \\
Stonebriar Dr. to Manchester D \\
El Dorado County, CA \\
Cumulative No Project
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Project Description Folsom Heights} \\
\hline \(\square\) Oper.(LOS) \& \& es. (N) \& \(\square\) Plan. (vp) \\
\hline \multicolumn{4}{|l|}{Flow Inputs} \\
\hline \begin{tabular}{l}
Volume, V (veh/h) \\
AADT(veh/h) \\
Peak-Hour Prop of AADT (veh/d) \\
Peak-Hour Direction Prop, D \\
DDHV (veh/h) \\
Driver Type Adjustment
\end{tabular} \& 1140

1.00 \& | Peak-Hour Factor, PHF |
| :--- |
| \%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$ |
| \%RVs, $P_{R}$ |
| General Terrain: |
| Grade Length (mi) |
| Up/Down \% |
| Number of Lanes | \& 0.91

4
0
Level
0.00
0.00
2 <br>
\hline \multicolumn{4}{|l|}{Calculate Flow Adjustments} <br>

\hline $$
\begin{aligned}
& \mathrm{f}_{\mathrm{p}} \\
& \mathrm{E}_{\mathrm{T}}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}} \\
& \mathrm{f}_{\mathrm{HV}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.2 \\
& 0.980
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Speed Inputs} \& \multicolumn{2}{|l|}{Calc Speed Adj and FFS} <br>

\hline | Lane Width, LW (ft) |
| :--- |
| Total Lateral Clearance, LC (ft) |
| Access Points, A (A/mi) |
| Median Type, M |
| FFS (measured) |
| Base Free-Flow Speed, BFFS | \& | 12.0 |
| :--- |
| 12.0 |
| 3 |
| Divided |
| 60.0 | \& | $\mathrm{f}_{\mathrm{Lw}}(\mathrm{mi} / \mathrm{h})$ |
| :--- |
| $\mathrm{f}_{\mathrm{LC}}$ (mi/h) |
| $\mathrm{f}_{\mathrm{A}}(\mathrm{m} / \mathrm{h})$ |
| $\mathrm{f}_{\mathrm{M}}(\mathrm{m} / \mathrm{h})$ |
| FFS (mi/h) | \& \[

$$
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.8 \\
& 0.0 \\
& 59.3
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Operations} \& \multicolumn{2}{|l|}{Design} <br>

\hline | Operational (LOS) |
| :--- |
| Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ |
| Speed, S (mi/h) |
| D (pc/mi/ln) |
| LOS | \& \[

$$
\begin{aligned}
& 638 \\
& 60.0 \\
& 10.6 \\
& \text { A }
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{Required Number of Lanes, N Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS} <br>

\hline \multicolumn{4}{|l|}{Bicycle Level of Service} <br>
\hline \multicolumn{2}{|l|}{Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h} \& \multicolumn{2}{|r|}{626.4} <br>
\hline \multicolumn{2}{|l|}{Effective width, $\mathrm{W}_{\mathrm{v}}$ (Eq. 15-29) ft} \& \multicolumn{2}{|r|}{24.00} <br>
\hline \multicolumn{2}{|l|}{Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)} \& \multicolumn{2}{|r|}{4.79} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service score, BLOS (Eq. 15-31)} \& \multicolumn{2}{|r|}{3.15} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service (Exhibit 15-4)} \& \multicolumn{2}{|r|}{C} <br>
\hline
\end{tabular}

## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to County Line
Anate Performed	12/19/2016	El Dorado County, CA	
Analysis Time Period	PM Peak Hour		Cumulative No Project


Flow Inputs
Volume, V (veh/h)


AADT(veh/h)
Peak-Hour Prop of AADT (veh/d)
Peak-Hour Direction Prop, D
DDHV (veh/h)
Driver Type Adjustment
Calculate Flow Adjustments


$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.943



## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Information} \& \multicolumn{2}{|l|}{Site Information} \\
\hline \begin{tabular}{l}
Analyst \\
Agency or Company \\
Date Performed \\
Analysis Time Period
\end{tabular} \& \begin{tabular}{l}
NKL \\
MRO Engineers, Inc. \\
12/19/2016 \\
PM Peak Hour
\end{tabular} \& Highway/Direction to Travel From/To Jurisdiction Analysis Year \& White Rock Road Stonebriar Dr. to County Line El Dorado County, CA Cumulative No Project \\
\hline \multicolumn{4}{|l|}{Project Description Folsom Heights} \\
\hline \(\square\) Oper.(LOS) \& \& s. (N) \& \(\square\) Plan. (vp) \\
\hline \multicolumn{4}{|l|}{Flow Inputs} \\
\hline \begin{tabular}{l}
Volume, V (veh/h) \\
AADT(veh/h) \\
Peak-Hour Prop of AADT (veh/d) \\
Peak-Hour Direction Prop, D \\
DDHV (veh/h) \\
Driver Type Adjustment
\end{tabular} \& 1390

1.00 \& | Peak-Hour Factor, PHF |
| :--- |
| \%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$ |
| \%RVs, $P_{R}$ |
| General Terrain: |
| Grade Length (mi) |
| Up/Down \% |
| Number of Lanes | \& \[

$$
\begin{aligned}
& 0.88 \\
& 9 \\
& 0 \\
& \text { Level } \\
& 0.00 \\
& 0.00 \\
& 2
\end{aligned}
$$
\] <br>

\hline \multicolumn{4}{|l|}{Calculate Flow Adjustments} <br>

\hline $$
\begin{aligned}
& f_{p} \\
& E_{T}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}} \\
& \mathrm{f}_{\mathrm{HV}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.2 \\
& 0.957
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Speed Inputs} \& \multicolumn{2}{|l|}{Calc Speed Adj and FFS} <br>

\hline | Lane Width, LW (ft) |
| :--- |
| Total Lateral Clearance, LC (ft) |
| Access Points, A (A/mi) |
| Median Type, M |
| FFS (measured) |
| Base Free-Flow Speed, BFFS | \& | 12.0 |
| :--- |
| 12.0 |
| 3 |
| Divided |
| 60.0 | \& | $\mathrm{f}_{\mathrm{Lw}}(\mathrm{mi} / \mathrm{h})$ |
| :--- |
| $\mathrm{f}_{\mathrm{LC}}$ (mi/h) |
| $\mathrm{f}_{\mathrm{A}}(\mathrm{m} / \mathrm{h})$ |
| $\mathrm{f}_{\mathrm{M}}(\mathrm{m} / \mathrm{h})$ |
| FFS (mi/h) | \& 0.0

0.0
0.8
0.0
59.3 <br>
\hline \multicolumn{2}{|l|}{Operations} \& \multicolumn{2}{|l|}{Design} <br>

\hline | Operational (LOS) |
| :--- |
| Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ |
| Speed, S (mi/h) |
| D (pc/mi/ln) |
| LOS | \& \[

$$
\begin{aligned}
& 825 \\
& 60.0 \\
& 13.8 \\
& \text { B }
\end{aligned}
$$

\] \& \multicolumn{2}{|l|}{| Required Number of Lanes, N |
| :--- |
| Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) |
| Max Service Flow Rate (pc/h/ln) Design LOS |} <br>

\hline \multicolumn{4}{|l|}{Bicycle Level of Service} <br>
\hline \multicolumn{2}{|l|}{Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h} \& \multicolumn{2}{|r|}{789.8} <br>
\hline \multicolumn{2}{|l|}{Effective width, $\mathrm{W}_{\mathrm{v}}$ (Eq. 15-29) ft} \& \multicolumn{2}{|r|}{24.00} <br>
\hline \multicolumn{2}{|l|}{Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)} \& \multicolumn{2}{|r|}{4.79} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service score, BLOS (Eq. 15-31)} \& \multicolumn{2}{|r|}{4.93} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service (Exhibit 15-4)} \& \multicolumn{2}{|r|}{E} <br>
\hline
\end{tabular}

## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To	Stonebriar Dr. to Manchester D
Date Performed	12/19/2016	Jurisdiction	El Dorado County, CA
Analysis Time Period	PM Peak Hour	Analysis Year	Cumulative No Project
Project Description Folsom Heights			
$\square$ Oper.(LOS)		$\square$ Des. ( N )	$\square$ Plan. (vp)


Flow Inputs
Volume, V (veh/h)


AADT(veh/h)	
Peak-Hour Prop of AADT (veh/d)	
Peak-Hour Direction Prop, D	
DDHV (veh/h)	
Driver Type Adjustment	
Calculate Flow Adjustments	


$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.985


Speed Inputs	Calc Speed Adj and FFS
Lane Width, LW (ft) 12.0   Total Lateral Clearance, LC (ft) 12.0   Access Points, A (A/mi) 3   Median Type, M Divided   FFS (measured)    Base Free-Flow Speed, BFFS 60.0	$\mathrm{f}_{\mathrm{LW}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{LC}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{A}}(\mathrm{mi} / \mathrm{h})$ 0.8   $\mathrm{f}_{\mathrm{M}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{FFS}(\mathrm{mi} / \mathrm{h})$ 59.3
Operations	Design
Operational (LOS)    Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ 906   Speed, S (mi/h) 60.0   D (pc/mi/ln) 15.1   LOS B	Design (N)   Required Number of Lanes, N Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	892.9
Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.05
Bicycle level of service (Exhibit 15-4)	C

## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$


## APPENDIX G

CUMULATIVE PLUS PROJECT
LEVEL OF SERVICE CALCULATION WORKSHEETS

	3		7	7		4	4	$\dagger$	1	$t$	$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中t		${ }^{1}$	44	F		\$		${ }^{1}$	F	
Volume (veh/h)	18	1549	10	20	1108	76	10	2	30	140	1	92
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	20	1684	11	22	1204	83	11	2	33	152	1	100
Adj No. of Lanes	1	2	0	1	2	1	0	1	0	1	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	32	2319	15	34	2282	1021	13	2	40	200	2	177
Arrive On Green	0.02	0.64	0.64	0.02	0.64	0.64	0.03	0.03	0.03	0.11	0.11	0.11
Sat Flow, veh/h	1774	3605	24	1774	3539	1583	391	71	1174	1774	16	1570
Grp Volume(v), veh/h	20	826	869	22	1204	83	46	0	0	152	0	101
Grp Sat Flow(s),veh/h/ln	1774	1770	1859	1774	1770	1583	1636	0	0	1774	0	1586
Q Serve(g_s), s	0.9	26.2	26.3	1.0	15.4	1.6	2.3	0.0	0.0	7.0	0.0	5.1
Cycle Q Clear(g_c), s	0.9	26.2	26.3	1.0	15.4	1.6	2.3	0.0	0.0	7.0	0.0	5.1
Prop In Lane	1.00		0.01	1.00		1.00	0.24		0.72	1.00		0.99
Lane Grp Cap(c), veh/h	32	1138	1196	34	2282	1021	56	0	0	200	0	179
V/C Ratio(X)	0.63	0.73	0.73	0.65	0.53	0.08	0.82	0.00	0.00	0.76	0.00	0.57
Avail Cap(c_a), veh/h	106	1223	1284	85	2404	1075	136	0	0	317	0	283
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	41.0	10.0	10.0	40.9	8.0	5.6	40.3	0.0	0.0	36.1	0.0	35.3
Incr Delay (d2), s/veh	19.2	2.0	1.9	18.9	0.2	0.0	24.3	0.0	0.0	5.9	0.0	2.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.6	13.3	13.9	0.7	7.4	0.7	1.4	0.0	0.0	3.7	0.0	2.4
LnGrp Delay(d),s/veh	60.2	12.0	12.0	59.8	8.2	5.6	64.6	0.0	0.0	42.0	0.0	38.1
LnGrp LOS	E	B	B	E	A	A	E			D		D
Approach Vol, veh/h		1715			1309			46			253	
Approach Delay, s/veh		12.6			8.9			64.6			40.4	
Approach LOS		B			A			E			D	


Timer	1	2	3	4	5	6	7
Assigned Phs	2	3	4	6	7	8	
Phs Duration (G+Y+Rc), s	6.9	5.6	58.0	13.5	5.5	58.1	
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	
Max Green Setting (Gmax), s	7.0	4.0	58.0	15.0	5.0	57.0	
Max Q Clear Time (g_c+l1), s	4.3	3.0	28.3	9.0	2.9	17.4	
Green Ext Time (p_c), s	0.0	0.0	25.7	0.5	0.0	32.9	


Intersection Summary	
HCM 2010 Ctrl Delay	14.0
HCM 2010 LOS	B


Intersection												
Intersection Delay, s/veh	8.1											
Intersection LOS	A											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	1	1	63	0	20	2	0	0	26	50	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.93	0.92	0.93	0.92	0.92	0.93	0.93
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1		68	0	22	2	0	0	28	54	22
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0


Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	2	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	2	1	1
HCM Control Delay	7.4	8	8
HCM LOS	A	A	A


Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1
Vol Left, \%	$100 \%$	$0 \%$	$2 \%$	$91 \%$	$3 \%$
Vol Thru, \%	$0 \%$	$71 \%$	$2 \%$	$9 \%$	$96 \%$
Vol Right, \%	$0 \%$	$29 \%$	$97 \%$	$0 \%$	$1 \%$
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	26	70	65	22	157
LT Vol	26	0	1	20	5
Through Vol	0	50	1	2	150
RT Vol	0	20	63	0	2
Lane Flow Rate	28	75	71	24	169
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.042	0.096	0.079	0.032	0.2
Departure Headway (Hd)	5.29	4.588	4.012	4.822	4.275
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	670	772	898	746	827
Service Time	3.077	2.374	2.014	2.826	2.367
HCM Lane VIC Ratio	0.042	0.097	0.079	0.032	0.204
HCM Control Delay	8.3	7.9	7.4	8	8.5
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.1	0.3	0.3	0.1	0.7



## Lane

	*	$\rightarrow$		7		4	4	9	$p$	$t$	$\downarrow$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4 $\%$		${ }^{7}$	44	「		$\uparrow$		${ }^{7}$	$\uparrow$	
Volume (veh/h)	75	1491	20	50	1451	126	20	4	40	87	4	41
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	86	1714	23	57	1668	145	23	5	46	100	5	47
Adj No. of Lanes	1	2	0	1	2	1	0	1	0	1	1	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	110	2299	31	73	2201	985	29	6	58	137	12	113
Arrive On Green	0.06	0.64	0.64	0.04	0.62	0.62	0.06	0.06	0.06	0.08	0.08	0.08
Sat Flow, veh/h	1774	3576	48	1774	3539	1583	515	112	1029	1774	154	1452
Grp Volume(v), veh/h	86	847	890	57	1668	145	74	0	0	100	0	52
Grp Sat Flow(s),veh/h/ln	1774	1770	1854	1774	1770	1583	1655	0	0	1774	0	1607
Q Serve(g_s), s	4.2	28.9	29.0	2.8	29.7	3.4	3.9	0.0	0.0	4.8	0.0	2.7
Cycle Q Clear(g_c), s	4.2	28.9	29.0	2.8	29.7	3.4	3.9	0.0	0.0	4.8	0.0	2.7
Prop In Lane	1.00		0.03	1.00		1.00	0.31		0.62	1.00		0.90
Lane Grp Cap(c), veh/h	110	1138	1192	73	2201	985	94	0	0	137	0	124
V/C Ratio(X)	0.78	0.74	0.75	0.78	0.76	0.15	0.79	0.00	0.00	0.73	0.00	0.42
Avail Cap(c_a), veh/h	161	1166	1222	121	2252	1007	188	0	0	202	0	183
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	40.7	10.8	10.8	41.8	11.9	6.9	41.0	0.0	0.0	39.7	0.0	38.7
Incr Delay (d2), s/veh	13.6	2.6	2.5	16.4	1.5	0.1	13.4	0.0	0.0	7.1	0.0	2.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	2.5	14.7	15.4	1.7	14.8	1.5	2.1	0.0	0.0	2.6	0.0	1.3
LnGrp Delay(d),s/veh	54.3	13.3	13.3	58.2	13.4	7.0	54.4	0.0	0.0	46.8	0.0	40.9
LnGrp LOS	D	B	B	E	B	A	D			D		D
Approach Vol, veh/h		1823			1870			74			152	
Approach Delay, s/veh		15.2			14.3			54.4			44.8	
Approach LOS		B			B			D			D	


Timer	1	2	3	4	5	6	7
Assigned Phs	2	3	4	6	7	8	
Phs Duration (G+Y+Rc), s	9.0	7.6	60.6	10.8	9.5	58.7	
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	
Max Green Setting (Gmax), s	10.0	6.0	58.0	10.0	8.0	56.0	
Max Q Clear Time (g_c+l1), s	5.9	4.8	31.0	6.8	6.2	31.7	
Green Ext Time (p_c), s	0.1	0.0	25.4	0.1	0.0	23.1	


Intersection Summary	
HCM 2010 Ctrl Delay	16.7
HCM 2010 LOS	B


Intersection												
Intersection Delay, s/veh	8.2											
Intersection LOS	A											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	4	3	42	0	10	4	0	0	55	130	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.98	0.92	0.98	0.92	0.92	0.98	0.98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	4	3	46	0	10	4	0	0	60	133	20
Number of Lanes	0	0	1	0	0	0	1	0	0	1	1	0


Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	2	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	2	1	1
HCM Control Delay	7.4	8	8.5
HCM LOS	A	A	A


Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1
Vol Left, \%	$100 \%$	$0 \%$	$8 \%$	$71 \%$	$6 \%$
Vol Thru, \%	$0 \%$	$87 \%$	$6 \%$	$29 \%$	$89 \%$
Vol Right, \%	$0 \%$	$13 \%$	$86 \%$	$0 \%$	$6 \%$
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	55	150	49	14	90
LT Vol	55	0	4	10	5
Through Vol	0	130	3	4	80
RT Vol	0	20	42	0	5
Lane Flow Rate	60	153	53	15	92
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.086	0.196	0.062	0.02	0.112
Departure Headway (Hd)	5.2	4.606	4.16	4.845	4.39
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	685	773	865	742	819
Service Time	2.963	2.368	2.165	2.853	2.4
HCM Lane V/C Ratio	0.088	0.198	0.061	0.02	0.112
HCM Control Delay	8.5	8.5	7.4	8	8
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.3	0.7	0.2	0.1	0.4


Intersection				
Intersection Delay, s/veh				
Intersection LOS	SBU	SBL	SBT	SBR
Movement	0	5	80	5
Vol, veh/h	0.92	0.98	0.98	0.92
Peak Hour Factor	2	2	2	2
Heavy Vehicles, \%	0	5	82	5
Mvmt Flow	0	0	1	0
Number of Lanes				
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	2			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	8			
HCM LOS				

## Lane

## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction   Analysis Year	Stonebriar Dr. to County Line
Date Performed El Dorado County, CA			
Analysis Time Period	AM Peak Hour		Cumulative + Project

## Flow Inputs

Volume, V (veh/h)	1577	Peak-Hour Factor, PHF	0.83
AADT(veh/h)		\%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$	15
Peak-Hour Prop of AADT (veh/d)		\%RVs, $\mathrm{P}_{\text {R }}$	0
Peak-Hour Direction Prop, D		General Terrain:	Level
DDHV (veh/h)		Grade Length (mi)	0.00
Driver Type Adjustment	1.00	Up/Down \%	0.00
		Number of Lanes	2
Calculate Flow Adjustments			
$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.930


Speed Inputs		Calc Sp	
Lane Width, LW (ft)   Total Lateral Clearance, LC (ft)   Access Points, A (A/mi)   Median Type, M   FFS (measured)   Base Free-Flow Speed, BFFS	12.0   12.0   3   Divided   60.0	$\mathrm{f}_{\mathrm{Lw}}(\mathrm{m} / \mathrm{h})$   $\mathrm{f}_{\mathrm{LC}}$ (mi/h)   $\mathrm{f}_{\mathrm{A}}(\mathrm{mi} / \mathrm{h})$   $\mathrm{f}_{\mathrm{M}}$ (mi/h)   FFS (mi/h)	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.8 \\ & 0.0 \\ & 59.3 \end{aligned}$
Operations		Design	
Operational (LOS)   Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$   Speed, S (mi/h)   D (pc/mi/ln)   LOS	$\begin{aligned} & 1021 \\ & 60.0 \\ & 17.0 \\ & \text { B } \end{aligned}$	Design (N)   Required N   Flow Rate, v   Max Service   Design LOS	
Bicycle Level of Service			
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h			950.0
Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft			24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)			4.79
Bicycle level of service score, BLOS (Eq. 15-31)			7.70
Bicycle level of service (Exhibit 15-4)			F

## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Information} \& \multicolumn{2}{|l|}{Site Information} \\
\hline \begin{tabular}{l}
Analyst \\
Agency or Company \\
Date Performed \\
Analysis Time Period
\end{tabular} \& \begin{tabular}{l}
NKL \\
MRO Engineers, Inc. 12/19/2016 \\
AM Peak Hour
\end{tabular} \& Highway/Direction to Travel From/To Jurisdiction Analysis Year \& \begin{tabular}{l}
White Rock Road \\
Stonebriar Dr. to County Line \\
El Dorado County, CA \\
Cumulative + Project
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Project Description Folsom Heights} \\
\hline \(\square\) Oper.(LOS) \& \& s. (N) \& \(\square\) Plan. (vp) \\
\hline \multicolumn{4}{|l|}{Flow Inputs} \\
\hline \begin{tabular}{l}
Volume, V (veh/h) \\
AADT(veh/h) \\
Peak-Hour Prop of AADT (veh/d) \\
Peak-Hour Direction Prop, D \\
DDHV (veh/h) \\
Driver Type Adjustment
\end{tabular} \& 1210

1.00 \& | Peak-Hour Factor, PHF |
| :--- |
| \%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$ |
| \%RVs, $P_{R}$ |
| General Terrain: |
| Grade Length (mi) |
| Up/Down \% |
| Number of Lanes | \& 0.94

10
0
Level
0.00
0.00
2 <br>
\hline \multicolumn{4}{|l|}{Calculate Flow Adjustments} <br>

\hline $$
\begin{aligned}
& f_{p} \\
& E_{T}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}} \\
& \mathrm{f}_{\mathrm{HV}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.2 \\
& 0.952
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Speed Inputs} \& \multicolumn{2}{|l|}{Calc Speed Adj and FFS} <br>

\hline | Lane Width, LW (ft) |
| :--- |
| Total Lateral Clearance, LC (ft) |
| Access Points, $\mathrm{A}(\mathrm{A} / \mathrm{mi})$ |
| Median Type, M |
| FFS (measured) |
| Base Free-Flow Speed, BFFS | \& | 12.0 |
| :--- |
| 12.0 |
| 3 |
| Divided |
| 60.0 | \& \[

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{LW}}(\mathrm{mi} / \mathrm{h}) \\
& \mathrm{f}_{\mathrm{LC}}(\mathrm{mi} / \mathrm{h}) \\
& \mathrm{f}_{\mathrm{A}}(\mathrm{mi} / \mathrm{h}) \\
& \mathrm{f}_{\mathrm{M}}(\mathrm{mi} / \mathrm{h}) \\
& \text { FFS }(\mathrm{mi} / \mathrm{h})
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.8 \\
& 0.0 \\
& 59.3
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Operations} \& \multicolumn{2}{|l|}{Design} <br>

\hline | Operational (LOS) |
| :--- |
| Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ |
| Speed, S (mi/h) |
| D (pc/mi/ln) |
| LOS | \& \[

$$
\begin{aligned}
& 675 \\
& 60.0 \\
& 11.3 \\
& \text { B }
\end{aligned}
$$

\] \& | Design (N) |
| :--- |
| Required Number of Lanes, Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h Design LOS | \& <br>

\hline \multicolumn{4}{|l|}{Bicycle Level of Service} <br>
\hline \multicolumn{2}{|l|}{Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h} \& \multicolumn{2}{|r|}{643.6} <br>
\hline \multicolumn{2}{|l|}{Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft} \& \multicolumn{2}{|r|}{24.00} <br>
\hline \multicolumn{2}{|l|}{Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)} \& \multicolumn{2}{|r|}{4.79} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service score, BLOS (Eq. 15-31)} \& \multicolumn{2}{|r|}{5.22} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service (Exhibit 15-4)} \& \multicolumn{2}{|r|}{E} <br>
\hline
\end{tabular}

## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to Manchester D
Anale Performed	12/19/2016	El Dorado County, CA	
Analysis Time Period	AM Peak Hour		Cumulative + Project


Flow Inputs
Volume, V (veh/h)


AADT(veh/h)
Peak-Hour Prop of AADT (veh/d)
Peak-Hour Direction Prop, D
DDHV (veh/h)   Driver Type Adjustment$\quad 1.00$
Calculate Flow Adjustments


$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.976


Speed Inputs	Calc Speed Adj and FFS
Lane Width, LW $(\mathrm{ft})$ 12.0   Total Lateral Clearance, LC $(\mathrm{ft})$ 12.0   Access Points, A (A/mi) 3   Median Type, M Divided   FFS (measured)    Base Free-Flow Speed, BFFS 60.0	$\mathrm{f}_{\mathrm{LW}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{LC}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{A}}(\mathrm{mi} / \mathrm{h})$ 0.8   $\mathrm{f}_{\mathrm{M}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{FFS}(\mathrm{mi} / \mathrm{h})$ 59.3
Operations	Design
Operational (LOS)    Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ 1061   Speed, $\mathrm{S}(\mathrm{mi} / \mathrm{h})$ 60.0   D (pc/mi/ln) 17.7   LOS B	Design ( N )   Required Number of Lanes, N Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h	1035.5
Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.69
Bicycle level of service (Exhibit 15-4)	D

## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$


## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to County Line
Anate Performed	12/19/2016	El Dorado County, CA	
Analysis Time Period	PM Peak Hour		Cumulative + Project

## Flow Inputs

Volume, V (veh/h)	1586	Peak-Hour Factor, PHF	0.93
AADT(veh/h)		\%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$	12
Peak-Hour Prop of AADT (veh/d)		\%RVs, $\mathrm{P}_{\mathrm{R}}$	0
Peak-Hour Direction Prop, D		General Terrain:	Level
DDHV (veh/h)	Grade Length (mi)	0.00	
Driver Type Adjustment	Up/Down $\%$	0.00	

Calculate Flow Adjustments

$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.943


Speed Inputs		Calc Spe	
Lane Width, LW (ft)   Total Lateral Clearance, LC (ft)   Access Points, A (A/mi)   Median Type, M   FFS (measured)   Base Free-Flow Speed, BFFS	12.0   12.0   3   Divided   60.0	$\mathrm{f}_{\mathrm{Lw}}(\mathrm{mi} / \mathrm{h})$   $\mathrm{f}_{\mathrm{LC}}(\mathrm{m} / \mathrm{h})$   $\mathrm{f}_{\mathrm{A}}(\mathrm{m} / \mathrm{h})$   $\mathrm{f}_{\mathrm{M}}(\mathrm{mi} / \mathrm{h})$   FFS (mi/h)	0.0 0.0 0.8 0.0 59.3
Operations		Design	
Operational (LOS)   Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$   Speed, S (mi/h)   D (pc/mi/ln)   LOS	$\begin{aligned} & 903 \\ & 60.0 \\ & 15.1 \\ & \text { B } \end{aligned}$	Required Number of Lanes, N   Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h)   Max Service Flow Rate (pc/h/ln) Design LOS	
Bicycle Level of Service			
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h			852.7
Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft			24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)			4.79
Bicycle level of service score, BLOS (Eq. 15-31)			6.21
Bicycle level of service (Exhibit 15-4)			$F$

## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$


## MULTILANE HIGHWAYS WORKSHEET(Direction 1)

General Information		Site Information	
Analyst	NKL	Highway/Direction to Travel	White Rock Road
Agency or Company	MRO Engineers, Inc.	From/To   Jurisdiction	Stonebriar Dr. to Manchester D
Aate Performed	Analysis Year	El Dorado County, CA	
Analysis Time Period	PM Peak Hour		Cumulative + Project


Flow Inputs
Volume, V (veh/h)


AADT(veh/h)	
Peak-Hour Prop of AADT (veh/d)	
Peak-Hour Direction Prop, D	
DDHV (veh/h)	
Driver Type Adjustment	
Calculate Flow Adjustments	


$\mathrm{f}_{\mathrm{p}}$	1.00	$\mathrm{E}_{\mathrm{R}}$	1.2
$\mathrm{E}_{\mathrm{T}}$	1.5	$\mathrm{f}_{\mathrm{HV}}$	0.985


Speed Inputs	Calc Speed Adj and FFS
Lane Width, LW (ft) 12.0   Total Lateral Clearance, LC (ft) 12.0   Access Points, A (A/mi) 3   Median Type, M Divided   FFS (measured)    Base Free-Flow Speed, BFFS 60.0	$\mathrm{f}_{\mathrm{LW}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{LC}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{f}_{\mathrm{A}}(\mathrm{mi} / \mathrm{h})$ 0.8   $\mathrm{f}_{\mathrm{M}}(\mathrm{mi} / \mathrm{h})$ 0.0   $\mathrm{FFS}(\mathrm{mi} / \mathrm{h})$ 59.3
Operations	Design
Operational (LOS)    Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ 977   Speed, S (mi/h) 60.0   D (pc/mi/ln) 16.3   LOS B	Design (N)   Required Number of Lanes, N Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	963.1
Effective width, $\mathrm{W}_{v}$ (Eq. 15-29) ft	24.00
Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.09
Bicycle level of service (Exhibit 15-4)	C

## MULTILANE HIGHWAYS WORKSHEET(Direction 2)

$\sqrt{x}$

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Information} \& \multicolumn{2}{|l|}{Site Information} \\
\hline \begin{tabular}{l}
Analyst \\
Agency or Company \\
Date Performed \\
Analysis Time Period
\end{tabular} \& \begin{tabular}{l}
NKL \\
MRO Engineers, Inc. 12/19/2016 \\
PM Peak Hour
\end{tabular} \& Highway/Direction to Travel From/To Jurisdiction Analysis Year \& \begin{tabular}{l}
White Rock Road \\
Stonebriar Dr. to Manchester D \\
El Dorado County, CA \\
Cumulative + Project
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Project Description Folsom Heights} \\
\hline \(\square\) Oper.(LOS) \& \& es. (N) \& \(\square\) Plan. (vp) \\
\hline \multicolumn{4}{|l|}{Flow Inputs} \\
\hline \begin{tabular}{l}
Volume, V (veh/h) \\
AADT(veh/h) \\
Peak-Hour Prop of AADT (veh/d) \\
Peak-Hour Direction Prop, D \\
DDHV (veh/h) \\
Driver Type Adjustment
\end{tabular} \& 1627

1.00 \& | Peak-Hour Factor, PHF |
| :--- |
| \%Trucks and Buses, $\mathrm{P}_{\mathrm{T}}$ |
| \%RVs, $P_{R}$ |
| General Terrain: |
| Grade Length (mi) |
| Up/Down \% |
| Number of Lanes | \& 0.92

5
0
Level
0.00
0.00
2 <br>
\hline \multicolumn{4}{|l|}{Calculate Flow Adjustments} <br>

\hline $$
\begin{aligned}
& \mathrm{f}_{\mathrm{p}} \\
& \mathrm{E}_{\mathrm{T}}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}} \\
& \mathrm{f}_{\mathrm{HV}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.2 \\
& 0.976
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Speed Inputs} \& \multicolumn{2}{|l|}{Calc Speed Adj and FFS} <br>

\hline | Lane Width, LW (ft) |
| :--- |
| Total Lateral Clearance, LC (ft) |
| Access Points, A (A/mi) |
| Median Type, M |
| FFS (measured) |
| Base Free-Flow Speed, BFFS | \& | 12.0 |
| :--- |
| 12.0 |
| 3 |
| Divided |
| 60.0 | \& | $\mathrm{f}_{\mathrm{Lw}}(\mathrm{mi} / \mathrm{h})$ |
| :--- |
| $\mathrm{f}_{\mathrm{LC}}$ (mi/h) |
| $\mathrm{f}_{\mathrm{A}}(\mathrm{m} / \mathrm{h})$ |
| $\mathrm{f}_{\mathrm{M}}(\mathrm{m} / \mathrm{h})$ |
| FFS (mi/h) | \& \[

$$
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.8 \\
& 0.0 \\
& 59.3
\end{aligned}
$$
\] <br>

\hline \multicolumn{2}{|l|}{Operations} \& \multicolumn{2}{|l|}{Design} <br>

\hline | Operational (LOS) |
| :--- |
| Flow Rate, $\mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h} / \mathrm{ln})$ |
| Speed, S (mi/h) |
| D (pc/mi/ln) |
| LOS | \& \[

$$
\begin{aligned}
& 906 \\
& 60.0 \\
& 15.1 \\
& \text { B }
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{Required Number of Lanes, N Flow Rate, $\mathrm{v}_{\mathrm{p}}$ (pc/h) Max Service Flow Rate (pc/h/ln) Design LOS} <br>

\hline \multicolumn{4}{|l|}{Bicycle Level of Service} <br>
\hline \multicolumn{2}{|l|}{Directional demand flow rate in outside lane, $v_{\mathrm{OL}}$ (Eq. 15-24) veh/h} \& \multicolumn{2}{|r|}{884.2} <br>
\hline \multicolumn{2}{|l|}{Effective width, $\mathrm{W}_{\mathrm{v}}$ (Eq. 15-29) ft} \& \multicolumn{2}{|r|}{24.00} <br>
\hline \multicolumn{2}{|l|}{Effective speed factor, $\mathrm{S}_{t}$ (Eq. 15-30)} \& \multicolumn{2}{|r|}{4.79} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service score, BLOS (Eq. 15-31)} \& \multicolumn{2}{|r|}{3.61} <br>
\hline \multicolumn{2}{|l|}{Bicycle level of service (Exhibit 15-4)} \& \multicolumn{2}{|r|}{D} <br>
\hline
\end{tabular}


[^0]:    ${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Manual , published by the Institute of Transportation Engineers.
    ${ }^{2}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
    ${ }^{3}$ Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
    ${ }^{4}$ Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
    ${ }^{5}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A
    ${ }^{6}$ Person-Trips
    *Indicates computation that has been rounded to the nearest whole number.
    Estimation Tool Developed by the Texas A\&M Transportation Institute - Version 2013.1

[^1]:    ${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Manual, published by the Institute of Transportation Engineers.
    ${ }^{2}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
    ${ }^{3}$ Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
    ${ }^{4}$ Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be
    ${ }^{5}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.
    ${ }^{6}$ Person-Trips
    *Indicates computation that has been rounded to the nearest whole number.
    Estimation Tool Developed by the Texas A\&M Transportation Institute - Version 2013.1

[^2]:    ${ }^{2}$ Person-Trips
    ${ }^{3}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
    *Indicates computation that has been rounded to the nearest whole number.

